Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alejandro Belanche is active.

Publication


Featured researches published by Alejandro Belanche.


Journal of Nutrition | 2012

Shifts in the Rumen Microbiota Due to the Type of Carbohydrate and Level of Protein Ingested by Dairy Cattle Are Associated with Changes in Rumen Fermentation

Alejandro Belanche; M. Doreau; Joan E. Edwards; Jon M. Moorby; Eric Pinloche; C. J. Newbold

Balancing energy and nitrogen in the rumen is a key to both profitability and environmental sustainability. Four dairy cows were used in a Latin square experimental design to investigate the effect of severe nitrogen underfeeding (110 vs. 80% of requirements) and the type of carbohydrate consumed [neutral detergent fiber rich (FIB) vs. starch rich (STA)] on the rumen ecosystem. These dietary treatments modified both rumen fermentation and microbial populations. Compared with STA diets, consumption of FIB diets increased bacterial and fungal diversity in the rumen and also increased the concentrations of cellulolytic microorganisms, including protozoa (+38%), anaerobic fungi (+59%), and methanogens (+27%). This microbial adaptation to fiber utilization led to similar digestibility values for the 2 carbohydrate sources and was accompanied by a shift in the rumen fermentation patterns; when the FIB diets were consumed, the cows had greater ruminal pH, ammonia concentrations, and molar proportions of acetate and propionate compared with when they consumed the STA diets. Certain rumen microorganisms were sensitive to a shortage of nitrogen; rumen concentrations of ammonia were 49% lower when the low-protein (LP) diets were consumed as were total bacteria (-13%), anaerobic fungi (-28%), methanogens (-27%), protozoa (-19%), cellulolytic bacteria, and microbial diversity compared with when the high-protein (HP) diets were consumed. As a result, the digestibility of the LP diets was less than that of the HP diets. These findings demonstrated that the rumen microbial ecosystem is directly linked to the rumen fermentation pattern and, to some extent, to the efficiency of diet utilization by dairy cattle.


Frontiers in Microbiology | 2015

The Role of Ciliate Protozoa in the Rumen.

C. J. Newbold; Gabriel de la Fuente; Alejandro Belanche; Eva Ramos-Morales; Neil R. McEwan

First described in 1843, Rumen protozoa with their striking appearance were assumed to be important for the welfare of their host. However, despite contributing up to 50% of the bio-mass in the rumen, the role of protozoa in rumen microbial ecosystem remains unclear. Phylogenetic analysis of 18S rDNA libraries generated from the rumen of cattle, sheep, and goats has revealed an unexpected diversity of ciliated protozoa although variation in gene copy number between species makes it difficult to obtain absolute quantification. Despite repeated attempts it has proven impossible to maintain rumen protozoa in axenic culture. Thus it has been difficult to establish conclusively a role of ciliate protozoa in rumen fiber degradation. The development of techniques to clone and express ciliate genes in λ phage, together with bioinformatic indices to confirm the ciliate origin of the genes has allowed the isolation and characterization of fibrolytic genes from rumen protozoa. Elimination of the ciliate protozoa increases microbial protein supply by up to 30% and reduces methane production by up to 11%. Our recent findings suggest that holotrich protozoa play a disproportionate role in supporting methanogenesis whilst the small Entodinium are responsible for much of the bacterial protein turnover. As yet no method to control protozoa in the rumen that is safe and practically applicable has been developed, however a range of plant extract capable of controlling if not completely eliminating rumen protozoa have been described.


Journal of Animal Science | 2012

Bacterial protein degradation by different rumen protozoal groups

Alejandro Belanche; G. de la Fuente; Jon M. Moorby; C. J. Newbold

Bacterial predation by protozoa has the most deleterious effect on the efficiency of N use within the rumen, but differences in activity among protozoal groups are not completely understood. Two in vitro experiments were conducted to identify the protozoal groups more closely related with rumen N metabolism. Rumen protozoa were harvested from cattle and 7 protozoal fractions were generated immediately after sampling by filtration through different nylon meshes at 39 °C, under a CO(2) atmosphere to maintain their activity. Protozoa were incubated with (14)C-labeled bacteria to determine their bacterial breakdown capacity, according to the amount of acid-soluble radioactivity released. Epidinium tended to codistribute with Isotricha and Entodinium with Dasytricha; therefore, their activity was calculated together. This study demonstrated that big Diplodiniinae had the greatest activity per cell (100 ng bacterial CP per protozoa and hour), followed by Epidinium plus Isotricha (36.4), small Diplodiniinae (34.2), and Entodinium plus Dasytricha (14.8), respectively. However, the activity per unit of protozoal volume seemed to vary, depending on the protozoal taxonomy. Small Diplodiniinae had the greatest activity per volume (325 ng bacterial CP per protozoal mm(3) and hour), followed by big Diplodiniinae (154), Entodinium plus Dasytricha (104), and Entodinium plus Dasytricha (25.6). A second experiment was conducted using rumen fluid from holotrich-monofaunated sheep. This showed that holotrich protozoa had a limited bacterial breakdown capacity per cell (Isotricha 9.44 and Dasytricha 5.81 ng bacterial CP per protozoa and hour) and per protozoal volume (5.97 and 76.9 ng bacterial CP per protozoal mm(3) and hour, respectively). Therefore, our findings indicated that a typical protozoal population (10(6) total protozoa/mL composed by Entodinium sp. 88%, Epidinium sp. 7%, and other species 4%) is able to break down ~17% of available rumen bacteria every hour. Entodinium sp. is responsible for most of this bacterial breakdown (70 to 75%), followed by Epidinium sp. (16 to 24%), big Diplodiniinae (4 to 6%), and small Diplodiniinae (2 to 6%), whereas holotrich protozoa have a negligible activity (Dasytricha sp. 0.6 to 1.2% and Isotricha sp. 0.2 to 0.5%). This in vitro information must be carefully interpreted, but it can be used to indicate which protozoal groups should be suppressed to improve microbial protein synthesis in vivo.


Journal of Animal Science | 2011

Study of the effect of presence or absence of protozoa on rumen fermentation and microbial protein contribution to the chyme.

Alejandro Belanche; Leticia Abecia; Grietje Holtrop; J. A. Guada; C. Castrillo; G. de la Fuente; J. Balcells

The aim of this study was to investigate the effect of presence or absence of protozoa on rumen fermentation and efficiency of microbial protein synthesis under different diets. Of 20 twin paired lambs, 1 lamb of each pair was isolated from the ewe within 24 h after birth and reared in a protozoa-free environment (n = 10), whereas their respective twin-siblings remained with the ewe (faunated, n = 10). When lambs reached 6 mo of age, 5 animals of each group were randomly allocated to 1 of 2 experimental diets consisting of either alfalfa hay as the sole diet, or 50:50 mixed with ground barley grain according to a 2 × 2 factorial arrangement of treatments. After 15 d of adaptation to the diet, the animals were euthanized and total rumen and abomasal contents were sampled to estimate rumen microbial synthesis using C(31) alkane as flow marker. Different ((15)N and purine bases) and a novel (recombinant DNA sequences) microbial markers, combined with several microbial reference extracts (rumen protozoa, liquid and solid associated bacteria) were evaluated. Absence of rumen protozoa modified the rumen fermentation pattern and decreased total tract OM and NDF digestibility in 2.0 and 5.1 percentage points, respectively. The effect of defaunation on microbial N flow was weak, however, and was dependent on the microbial marker and microbial reference extract considered. Faunated lambs fed with mixed diet showed the greatest rumen protozoal concentration and the least efficient microbial protein synthesis (29% less than the other treatments), whereas protozoa-free lambs fed with mixed diet presented the smallest ammonia concentration and 34% greater efficiency of N utilization than the other treatments. Although (15)N gave the most precise estimates of microbial synthesis, the use of recombinant DNA sequences represents an alternative that allows separate quantification of the bacteria and protozoa contributions. This marker showed that presence of protozoa decrease the bacterial-N flow through the abomasum by 33%, whereas the protozoa-N contribution to the microbial N flow increased from 1.9 to 14.1% when barley grain was added to the alfalfa hay. Absolute data related to intestinal flow must be treated with caution because the limitations of the sampling and maker system employed.


FEMS Microbiology Ecology | 2014

Study of methanogen communities associated with different rumen protozoal populations

Alejandro Belanche; Gabriel de la Fuente; C. J. Newbold

Protozoa-associated methanogens (PAM) are considered one of the most active communities in the rumen methanogenesis. This experiment investigated whether methanogens are sequestrated within rumen protozoa, and structural differences between rumen free-living methanogens and PAM. Rumen protozoa were harvested from totally faunated sheep, and six protozoal fractions (plus free-living microorganisms) were generated by sequential filtration. Holotrich-monofaunated sheep were also used to investigate the holotrich-associated methanogens. Protozoal size determined the number of PAM as big protozoa had 1.7–3.3 times more methanogen DNA than smaller protozoa, but also more endosymbiotic bacteria (2.2- to 3.5-fold times). Thus, similar abundance of methanogens with respect to total bacteria were observed across all protozoal fractions and free-living microorganisms, suggesting that methanogens are not accumulated within rumen protozoa in a greater proportion to that observed in the rumen as a whole. All rumen methanogen communities had similar diversity (22.2 ± 3.4 TRFs). Free-living methanogens composed a conserved community (67% similarity within treatment) in the rumen with similar diversity but different structures than PAM (P < 0.05). On the contrary, PAM constituted a more variable community (48% similarity), which differed between holotrich and total protozoa (P < 0.001). Thus, PAM constitutes a community, which requires further investigation as part of methane mitigation strategies.


PLOS ONE | 2014

Pros and Cons of Ion-Torrent Next Generation Sequencing versus Terminal Restriction Fragment Length Polymorphism T-RFLP for Studying the Rumen Bacterial Community

Gabriel de la Fuente; Alejandro Belanche; Susan E. Girwood; Eric Pinloche; Toby J. Wilkinson; C. Jamie Newbold

The development of next generation sequencing has challenged the use of other molecular fingerprinting methods used to study microbial diversity. We analysed the bacterial diversity in the rumen of defaunated sheep following the introduction of different protozoal populations, using both next generation sequencing (NGS: Ion Torrent PGM) and terminal restriction fragment length polymorphism (T-RFLP). Although absolute number differed, there was a high correlation between NGS and T-RFLP in terms of richness and diversity with R values of 0.836 and 0.781 for richness and Shannon-Wiener index, respectively. Dendrograms for both datasets were also highly correlated (Mantel test = 0.742). Eighteen OTUs and ten genera were significantly impacted by the addition of rumen protozoa, with an increase in the relative abundance of Prevotella, Bacteroides and Ruminobacter, related to an increase in free ammonia levels in the rumen. Our findings suggest that classic fingerprinting methods are still valuable tools to study microbial diversity and structure in complex environments but that NGS techniques now provide cost effect alternatives that provide a far greater level of information on the individual members of the microbial population.


Journal of Animal Science | 2012

Effect of diet and absence of protozoa on the rumen microbial community and on the representativeness of bacterial fractions used in the determination of microbial protein synthesis

Alejandro Belanche; G. de la Fuente; Eric Pinloche; C. J. Newbold; J. Balcells

Accurate estimates of microbial synthesis in the rumen are vital to optimize ruminant nutrition. Liquid- (LAB) and solid-associated bacterial fractions (SAB) harvested from the rumen are generally considered as microbial references when microbial yield is calculated; however, factors that determine their composition are not completely understood. The aim of this study was to evaluate the effect of diet and absence or presence of rumen protozoa on the rumen microbial community. It was hypothesized that these treatments could modify the composition and representativeness of LAB and SAB. Twenty twin lambs (Ovis aries) were used; one-half of the twins were kept protozoa-free, and each respective twin sibling was faunated. At 6 mo of age, 5 animals from each group were randomly allocated to the experimental diets consisting of either alfalfa hay as the sole diet, or 50:50 mixed with ground barley grain. After 15 d of adaptation to the diet, animals were euthanized, rumen and abomasum contents were sampled, and LAB and SAB isolated. The presence of protozoa buffered the effect of diet on the rumen bacterial population. Faunated animals fed alfalfa hay had a greater abundance of F. succinogenes, anaerobic fungi and methanogens, as well as an enhanced rumen bacterial diversity. Cellulolytic bacteria were more abundant in SAB, whereas the abomasal abundance of most of the microorganisms studied was closer to those values observed in LAB. Rumen and abomasal samples showed similar bacterial DNA concentrations, but the fungal and protozoal DNA concentration in the abomasum was only 69% and 13% of that observed in the rumen, respectively, suggesting fungal and protozoal sequestration in the rumen or possible preferential degradation of fungal and protozoal DNA in the abomasum, or both. In conclusion, absence of protozoa and type of diet extensively modified the chemical composition of LAB and SAB as a consequence of changes in the microbial composition of these fractions.


FEMS Microbiology Ecology | 2015

Effect of progressive inoculation of fauna-free sheep with holotrich protozoa and total-fauna on rumen fermentation, microbial diversity and methane emissions

Alejandro Belanche; Gabriel de la Fuente; C. J. Newbold

Rumen methanogenesis represents an energy waste for the ruminant and an important source of greenhouse gas; thus, integrated studies are needed to fully understand this process. Eight fauna-free sheep were used to investigate the effect of successive inoculation with holotrich protozoa then with total fauna on rumen methanogenesis. Holotrichs inoculation neither altered rumen fermentation rate nor diet digestibility, but increased concentrations of acetate (+15%), butyrate (+57%), anaerobic fungi (+0.82 log), methanogens (+0.41 log) and methanogenesis (+54%). Further inoculation with total fauna increased rumen concentrations of protozoa (+1.0 log), bacteria (+0.29 log), anaerobic fungi (+0.78 log), VFA (+8%), ammonia and fibre digestibility (+17%) without affecting levels of methanogens or methanogenesis. Rumen methanogens population was fairly stable in terms of structure and diversity, while the bacterial community was highly affected by the treatments. Inoculation with holotrich protozoa increased bacterial diversity. Further inoculation with total fauna lowered bacterial diversity but increased concentrations of certain propionate and lactate-producing bacteria, suggesting that alternative H2 sinks could be relevant. This experiment suggests that holotrich protozoa have a greater impact on rumen methanogenesis than entodiniomorphids. Thus, further research is warranted to understand the effect of holotrich protozoa on methane formation and evaluate their elimination from the rumen as a potential methane mitigation strategy.


FEMS Microbiology Ecology | 2015

Effects and mode of action of chitosan and ivy fruit saponins on the microbiome, fermentation and methanogenesis in the rumen simulation technique

Alejandro Belanche; Eric Pinloche; David Preskett; C. Jamie Newbold

This study investigates the effects of supplementing a control diet (CON) with chitosan (CHI) or ivy fruit saponins (IVY) as natural feed additives. Both additives had similar abilities to decrease rumen methanogenesis (–42% and –40%, respectively) using different mechanisms: due to its antimicrobial and nutritional properties CHI promoted a shift in the fermentation pattern towards propionate production which explained about two thirds of the decrease in methanogenesis. This shift was achieved by a simplification of the structure in the bacterial community and a substitution of fibrolytic (Firmicutes and Fibrobacteres) by amylolytic bacteria (Bacteroidetes and Proteobacteria) which led to greater amylase activity, lactate and microbial protein yield with no detrimental effect on feed digestibility. Contrarily, IVY had negligible nutritional properties promoting minor changes in the fermentation pattern and on the bacterial community. Instead, IVY modified the structure of the methanogen community and decreased its diversity. This specific antimicrobial effect of IVY against methanogens was considered its main antimethanogenic mechanism. IVY had however a negative impact on microbial protein synthesis. Therefore, CHI and IVY should be further investigated in vivo to determine the optimum doses which maintain low methanogenesis but prevent negative effects on the rumen fermentation and animal metabolism.


Journal of Animal Science | 2011

Technical note: The persistence of microbial-specific DNA sequences through gastric digestion in lambs and their potential use as microbial markers.

Alejandro Belanche; G. de la Fuente; David Rafael Yáñez-Ruiz; C. J. Newbold; L. Calleja; J. Balcells

Two groups of 5 lambs were euthanized at the weaning (T45) and fattening stages (T90) to evaluate the use of microbial ribosomal DNA (rDNA) sequences as potential microbial markers in relation to purine bases (PB) as a conventional marker. Both microbial markers originated similar microbial N concentrations (mg/g of DM), although T45 showed decreased values compared with the T90 group when either PB or rDNA were considered (P = 0.02). The survival of microbial rDNA was determined in 3 digestive sites (omasum, abomasum, and duodenum), but no substantial differences were observed, indicating that rDNA maintains the molecular stability along the sampling sites analyzed. Contrarily PB concentration increased successively along the digestive tract (P < 0.05), likely as a consequence of the endogenous PB secretion. Undegraded milk PB may also explain the overestimation of the microbial N concentration (2.8 times greater) using PB than rDNA sequences. Abomasum was the sampling site where the best agreement between PB and rDNA estimations was observed. Protozoal N concentration was irrelevant in T45 animals, although substantial in T90 lambs (18% of microbial N). In conclusion, bacterial 16S and protozoal 18S rDNA sequences may persist through the gastric digestive tract and their utilization as a highly specific microbial marker should not be neglected.

Collaboration


Dive into the Alejandro Belanche's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Balcells

University of Zaragoza

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Calleja

University of Zaragoza

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge