Eric Rosenfeld
University of La Rochelle
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eric Rosenfeld.
Yeast | 2003
Eric Rosenfeld; Bertrand Beauvoit
Saccharomyces cerevisiae is a facultative anaerobe devoid of mitochondrial alternative oxidase. In this yeast, the structure and biogenesis of the respiratory chain, on the one hand, and the functional interactions of oxidative phosphorylation with the cellular energetic metabolism, on the other, are well documented. However, to our knowledge, the molecular aspects and the physiological roles of the non‐respiratory pathways that utilize molecular oxygen have not yet been reviewed. In this paper, we review the various non‐respiratory pathways in a global context of utilization of molecular oxygen in S. cerevisiae. The roles of these pathways are examined as a function of environmental conditions, using either physiological, biochemical or molecular data. Special attention is paid to the characterization of the so‐called ‘cyanide‐resistant respiration’ that is induced by respiratory deficiency, catabolic repression and oxygen limitation during growth. Finally, several aspects of oxygen sensing are discussed. Copyright
Applied and Environmental Microbiology | 2003
Eric Rosenfeld; Bertrand Beauvoit; Bruno Blondin; Jean-Michel Salmon
ABSTRACT The anaerobic growth of the yeast Saccharomyces cerevisiae normally requires the addition of molecular oxygen, which is used to synthesize sterols and unsaturated fatty acids (UFAs). A single oxygen pulse can stimulate enological fermentation, but the biochemical pathways involved in this phenomenon remain to be elucidated. We showed that the addition of oxygen (0.3 to 1.5 mg/g [dry mass] of yeast) to a lipid-depleted medium mainly resulted in the synthesis of the sterols and UFAs required for cell growth. However, the addition of oxygen during the stationary phase in a medium containing excess ergosterol and oleic acid increased the specific fermentation rate, increased cell viability, and shortened the fermentation period. Neither the respiratory chain nor de novo protein synthesis was required for these medium- and long-term effects. As de novo lipid synthesis may be involved in ethanol tolerance, we studied the effect of oxygen addition on sterol and UFA auxotrophs (erg1 and ole1 mutants, respectively). Both mutants exhibited normal anaerobic fermentation kinetics. However, only the ole1 mutant strain responded to the oxygen pulse during the stationary phase, suggesting that de novo sterol synthesis is required for the oxygen-induced increase of the specific fermentation rate. In conclusion, the sterol pathway appears to contribute significantly to the oxygen consumption capacities of cells under anaerobic conditions. Nevertheless, we demonstrated the existence of alternative oxygen consumption pathways that are neither linked to the respiratory chain nor linked to heme, sterol, or UFA synthesis. These pathways dissipate the oxygen added during the stationary phase, without affecting the fermentation kinetics.
Fish & Shellfish Immunology | 2010
Andrea Luna-Acosta; Eric Rosenfeld; Myriam Amari; Ingrid Fruitier-Arnaudin; Paco Bustamante; Hélène Thomas-Guyon
Phenoloxidases (POs) are a family of enzymes including tyrosinases, catecholases and laccases, which play an important role in immune defence mechanisms in various invertebrates. The aim of this study was to thoroughly identify the PO-like activity present in the hemolymph of the Pacific oyster Crassostrea gigas, by using different substrates (i.e. dopamine and p-phenylenediamine, PPD) and different PO inhibitors. In order to go deeper in this analysis, we considered separately plasma and hemocyte lysate supernatant (HLS). In crude plasma, oxygraphic assays confirmed the presence of true oxidase activities. Moreover, the involvement of peroxidase(s) was excluded. In contrast to other molluscs, no tyrosinase-like activity was detected. With dopamine as substrate, PO-like activity was inhibited by the PO inhibitors tropolone, phenylthiourea (PTU), salicylhydroxamic acid and diethyldithio-carbamic acid, by a specific inhibitor of tyrosinases and catecholases, i.e. 4-hexylresorcinol (4-HR), and by a specific inhibitor of laccases, i.e. cetyltrimethylammonium bromide (CTAB). With PPD as substrate, PO-like activity was inhibited by PTU and CTAB. In precipitated protein fractions from plasma, and with dopamine and PPD as substrates, PTU and 4-HR, and PTU and CTAB inhibited PO-like activity, respectively. In precipitated protein fractions from hemocyte lysate supernatant, PTU and CTAB inhibited PO-like activity, independently of the substrate. Taken together, these results suggest the presence of both catecholase- and laccase-like activities in plasma, and the presence of a laccase-like activity in HLS. To the best of our knowledge, this is the first time that a laccase-like activity is identified in a mollusc by using specific substrates and inhibitors for laccase, opening new perspectives for studying the implication of this enzyme in immune defence mechanisms of molluscs of high economic value such as C. gigas.
Applied and Environmental Microbiology | 2013
Virginie Dufour; Martin Stahl; Eric Rosenfeld; Alain Stintzi; Christine Baysse
ABSTRACT Campylobacter jejuni is a widespread pathogen responsible for most of the food-borne gastrointestinal diseases in Europe. The use of natural antimicrobial molecules is a promising alternative to antibiotic treatments for pathogen control in the food industry. Isothiocyanates are natural antimicrobial compounds, which also display anticancer activity. Several studies described the chemoprotective effect of isothiocyanates on eukaryotic cells, but the antimicrobial mechanism is still poorly understood. We investigated the early cellular response of C. jejuni to benzyl isothiocyanate by both transcriptomic and physiological approaches. The transcriptomic response of C. jejuni to benzyl isothiocyanate showed upregulation of heat shock response genes and an impact on energy metabolism. Oxygen consumption was progressively impaired by benzyl isothiocyanate treatment, as revealed by high-resolution respirometry, while the ATP content increased soon after benzyl isothiocyanate exposition, which suggests a shift in the energy metabolism balance. Finally, benzyl isothiocyanate induced intracellular protein aggregation. These results indicate that benzyl isothiocyanate affects C. jejuni by targeting proteins, resulting in the disruption of major metabolic processes and eventually leading to cell death.
Journal of Enzyme Inhibition and Medicinal Chemistry | 2007
Maria de Fatima Pereira; Romain Chevrot; Eric Rosenfeld; Valérie Thiéry; Thierry Besson
A simple and efficient microwave-assisted methodology for regioselective alkylation of exocyclic nitrogen of cyclic amidines was developed and novel N-alkylated 3,4-dihydropyrazino[2,1-b]quinazolin-6-ones were prepared. Although none of the molecules tested have any specific anti-quorum sensing (–QS) activity, our result validates the growth tests devised to control the bias of the anti-QS tests. Among the molecules studied, compound 2b exhibits interesting activity against the Gram-negative bacteria Escherichia coli and Shigella sonnei.
Comparative Biochemistry and Physiology B | 2011
Andrea Luna-Acosta; Hélène Thomas-Guyon; Myriam Amari; Eric Rosenfeld; Paco Bustamante; Ingrid Fruitier-Arnaudin
Phenoloxidases (POs) play a key role in melanin production, are involved in invertebrate immune mechanisms, and have been detected in different bivalves. Recently, we identified catecholase- and laccase-like PO activities in plasma and haemocyte lysate supernatant (HLS) of the Pacific oyster Crassostrea gigas. To go further in our investigations, the aims of this study were (i) to determine the tissue distribution of PO activities in C. gigas, and (ii) to identify and characterise the different sub-classes of POs (i.e. tyrosinase, catecholase and/or laccase) involved in these oxido-reductase activities. With dopamine and p-phenylenediamine (PPD) but not with l-tyrosine used as substrates, PO-activities were detected by spectrophotometry in the gills, digestive gland, mantle, and muscle. These results suggest the presence of catecholase and laccase but not of tyrosinase activities in oyster tissues. The highest activity was recovered in the digestive gland. PO-like activities were all inhibited by 1-phenyl-2-thiourea (PTU) and by the specific laccase inhibitor, cethyltrimethylammonium bromide (CTAB). With dopamine as substrate, the catecholase inhibitor 4-hexylresorcinol (4-HR) only inhibited PO in the muscle. SDS-PAGE zymographic assays with dopamine and PPD elicited a unique ~40kDa protein band in the muscle. In the other tissues, laccase-like activities could be related to ~10kDa and/or ~200kDa protein bands. The ~10kDa protein band was also detected in plasma and HLS, confirming the presence of a laccase in the later compartments, and probably in most of the tissues of C. gigas. This is the first time to our knowledge that a ~10kDa protein band is associated to a laccase-like activity in a mollusc species, contributing to the characterisation of phenoloxidase activities in marine bivalves.
Journal of Dairy Research | 2006
Sandrine Didelot; Stéphanie Bordenave-Juchereau; Eric Rosenfeld; Jean-Marie Piot; Frederic Sannier
Seven lactobacilli and a variety of microflora extracted from twenty five commercial cheeses were grown on unsupplemented acid goat whey and screened for their capacity to hydrolyse whey proteins [alpha-lactalbumin (alpha-la) and beta-lactoglobulin (beta-lg)] and to generate peptides. Fermentations were performed aerobically or anaerobically at 37 degrees C using crude or pre-heated whey (10 min at 65, 75 or 85 degrees C). Under aerobic conditions, growth of lactobacilli was poor and protein hydrolysis did not occur. Anaerobic conditions slightly increased lactobacilli growth but neither beta-lg hydrolysis nor peptide generation were observed. More than 50% of alpha-la was digested into a truncated form of alpha-la (+/- 12 kDa) in crude whey and whey pre-heated at 65 degrees C. Twenty-five microflora extracted from raw milk cheeses were screened for their proteolytic activities on acid goat whey under the conditions previously described. Eight of them were able to hydrolyse up to 50% of alpha-la mainly during aerobic growth on crude or pre-heated whey. The corresponding hydrolysates were enriched in peptides. The hydrolysate involving microflora extracted from Comté cheese after or at 18 months ripening was the only one to exhibit hydrolysis of both alpha-la and beta-lg. Microbiological analysis showed that microorganisms originating from Comté cheese and capable of growth on unsupplemented whey consisted of Candida parapsilosis and Lactobacillus paracasei. Fermentation kinetic profiles suggested that peptides were released from alpha-la hydrolysis. The co-culture of both microorganisms was required for alpha-la hydrolysis that occurred concomitantly with the pH decrease. During whey fermentation, Cand. parapsilosis excrete at least one protease responsible for alpha-la hydrolysis, and Lb. paracasei is responsible for medium acidification that is required for protease activation.
Applied and Environmental Microbiology | 2012
Betty Kientz; Peter Vukusic; Stephen Luke; Eric Rosenfeld
ABSTRACT Iridescence is a property of structural color that is occasionally encountered in higher eukaryotes but that has been poorly documented in the prokaryotic kingdom. In the present work, we describe a marine bacterium, identified as Cellulophaga lytica, isolated from the surface of an anemone, that exhibits bright green iridescent colonies under direct epi-illumination. This phenomenon has not previously been investigated in detail. In this study, color changes of C. lytica colonies were observed at various angles of direct illumination or observation. Its iridescent green appearance was dominant on various growth media. Red and violet colors were also discerned on colony edges. Remarkable C. lytica bacterial iridescence was revealed and characterized using high-resolution optical spectrometry. In addition to this, by culturing other bacterial strains to which various forms of faintly iridescent traits have previously been attributed, we identify four principal appearance characteristics of structural color in prokaryotes. A new general classification of bacterial iridescence is therefore proposed in this study. Furthermore, a specific separate class is described for iridescent C. lytica strains because they exhibit what is so far a unique intense glitter-like iridescence in reflection. C. lytica is the first prokaryote discovered to produce the same sort of intense iridescence under direct illumination as that associated with higher eukaryotes, like some insects and birds. Due to the nature of bacterial biology, cultivation, and ubiquity, this discovery may be of significant interest for both ecological and nanoscience endeavors.
Scientific Reports | 2016
Betty Kientz; Stephen Luke; Peter Vukusic; Renaud Péteri; Cyrille Beaudry; Tristan Renault; David Simon; Tâm Mignot; Eric Rosenfeld
Iridescent color appearances are widespread in nature. They arise from the interaction of light with micron- and submicron-sized physical structures spatially arranged with periodic geometry and are usually associated with bright angle-dependent hues. Iridescence has been reported for many animals and marine organisms. However, iridescence has not been well studied in bacteria. Recently, we reported a brilliant “pointillistic” iridescence in colony biofilms of marine Flavobacteria that exhibit gliding motility. The mechanism of their iridescence is unknown. Here, using a multi-disciplinary approach, we show that the cause of iridescence is a unique periodicity of the cell population in the colony biofilm. Cells are arranged together to form hexagonal photonic crystals. Our model highlights a novel pattern of self-organization in a bacterial biofilm. ”Pointillistic” bacterial iridescence can be considered a new light-dependent phenomenon for the field of microbiology.
Microbiology | 2013
Virginie Dufour; Jennifer Li; Annika Flint; Eric Rosenfeld; Katell Rivoal; Sylvie Georgeault; Bachar Alazzam; Gwennola Ermel; Alain Stintzi; Martine Bonnaure-Mallet; Christine Baysse
Transcriptional regulation mediates adaptation of pathogens to environmental stimuli and is important for host colonization. The Campylobacter jejuni genome sequence reveals a surprisingly small set of regulators, mostly of unknown function, suggesting an intricate regulatory network. Interestingly, C. jejuni lacks the homologues of ubiquitous regulators involved in stress response found in many other Gram-negative bacteria. Nonetheless, cj1000 is predicted to encode the sole LysR-type regulator in the C. jejuni genome, and thus may be involved in major adaptation pathways. A cj1000 mutant strain was constructed and found to be attenuated in its ability to colonize 1-day-old chicks. Complementation of the cj1000 mutation restored the colonization ability to wild-type levels. The mutant strain was also outcompeted in a competitive colonization assay of the piglet intestine. Oxygraphy was carried out for what is believed to be the first time with the Oroboros Oxygraph-2k on C. jejuni and revealed a role for Cj1000 in controlling O2 consumption. Furthermore, microarray analysis of the cj1000 mutant revealed both direct and indirect regulatory targets, including genes involved in energy metabolism and oxidative stress defences. These results highlight the importance of Cj1000 regulation in host colonization and in major physiological pathways.