Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric Rus is active.

Publication


Featured researches published by Eric Rus.


Journal of the American Chemical Society | 2010

Pt-Decorated PdCo@Pd/C Core−Shell Nanoparticles with Enhanced Stability and Electrocatalytic Activity for the Oxygen Reduction Reaction

Deli Wang; Huolin L. Xin; Yingchao Yu; Hongsen Wang; Eric Rus; David A. Muller; Héctor D. Abruña

A simple method for the preparation of PdCo@Pd core-shell nanoparticles supported on carbon based on an adsorbate-induced surface segregation effect has been developed. The stability of these PdCo@Pd nanoparticles and their electrocatalytic activity for the oxygen reduction reaction (ORR) were enhanced by decoration with a small amount of Pt deposited via a spontaneous displacement reaction. The facile method described herein is suitable for large-scale, lower-cost production and significantly lowers the Pt loading and thus the cost. The as-prepared PdCo@Pd and Pd-decorated PdCo@Pd nanocatalysts have a higher methanol tolerance than Pt/C in the ORR and are promising cathode catalysts for fuel cell applications.


Nano Letters | 2012

Three-Dimensional Tracking and Visualization of Hundreds of Pt−Co Fuel Cell Nanocatalysts During Electrochemical Aging

Yingchao Yu; Huolin L. Xin; Robert Hovden; Deli Wang; Eric Rus; Julia A. Mundy; David A. Muller; Héctor D. Abruña

We present an electron tomography method that allows for the identification of hundreds of electrocatalyst nanoparticles with one-to-one correspondence before and after electrochemical aging. This method allows us to track, in three-dimensions, the trajectories and morphologies of each Pt-Co nanocatalyst on a fuel cell carbon support. In conjunction with the use of atomic-scale electron energy loss spectroscopic imaging, our experiment enables the correlation of performance degradation of the catalyst with changes in particle/interparticle morphologies, particle-support interactions, and the near-surface chemical composition. We found that aging of the catalysts under normal fuel cell operating conditions (potential scans from +0.6 to +1.0 V for 30,000 cycles) gives rise to coarsening of the nanoparticles, mainly through coalescence, which in turn leads to the loss of performance. The observed coalescence events were found to be the result of nanoparticle migration on the carbon support during potential cycling. This method provides detailed insights into how nanocatalyst degradation occurs in proton exchange membrane fuel cells (PEMFCs) and suggests that minimization of particle movement can potentially slow down the coarsening of the particles and the corresponding performance degradation.


Journal of the American Chemical Society | 2010

Highly Stable and CO-Tolerant Pt/Ti0.7W0.3O2 Electrocatalyst for Proton-Exchange Membrane Fuel Cells

Deli Wang; Chinmayee V. Subban; Hongsen Wang; Eric Rus; Francis J. DiSalvo; Héctor D. Abruña

The current materials used in proton-exchange membrane fuel cells (PEMFCs) are not sufficiently durable for commercial deployment. One of the major challenges lies in the development of an inexpensive, efficient, and CO-tolerant anode catalyst. Here we report the unique CO-tolerant property of Pt nanoparticles supported on Ti(0.7)W(0.3)O(2). The Ti(0.7)W(0.3)O(2) nanoparticles (50 nm) were synthesized via a sol-gel process and platinized using an impregnation-reduction technique. Electrochemical studies of Pt/Ti(0.7)W(0.3)O(2) show unique CO-tolerant electrocatalytic activity for hydrogen oxidation compared to commercial E-TEK PtRu/C catalysts. Differential electrochemical mass spectrometry measurements show the onset potential for CO oxidation on Pt/Ti(0.7)W(0.3)O(2) to be below 0.1 V (vs RHE). Pt/Ti(0.7)W(0.3)O(2) is a promising new anode catalyst for PEMFC applications.


Analytical Chemistry | 2014

CO2 and O2 Evolution at High Voltage Cathode Materials of Li-Ion Batteries: A Differential Electrochemical Mass Spectrometry Study

Hongsen Wang; Eric Rus; Takahito Sakuraba; Jun Kikuchi; Yasuyuki Kiya; Héctor D. Abruña

A three-electrode differential electrochemical mass spectrometry (DEMS) cell has been developed to study the oxidative decomposition of electrolytes at high voltage cathode materials of Li-ion batteries. In this DEMS cell, the working electrode used was the same as the cathode electrode in real Li-ion batteries, i.e., a lithium metal oxide deposited on a porous aluminum foil current collector. A charged LiCoO2 or LiMn2O4 was used as the reference electrode, because of their insensitivity to air, when compared to lithium. A lithium sheet was used as the counter electrode. This DEMS cell closely approaches real Li-ion battery conditions, and thus the results obtained can be readily correlated with reactions occurring in real Li-ion batteries. Using DEMS, the oxidative stability of three electrolytes (1 M LiPF6 in EC/DEC, EC/DMC, and PC) at three cathode materials including LiCoO2, LiMn2O4, and LiNi(0.5)Mn(1.5)O4 were studied. We found that 1 M LiPF6 + EC/DMC electrolyte is quite stable up to 5.0 V, when LiNi(0.5)Mn(1.5)O4 is used as the cathode material. The EC/DMC solvent mixture was found to be the most stable for the three cathode materials, while EC/DEC was the least stable. The oxidative decomposition of the EC/DEC mixture solvent could be readily observed under operating conditions in our cell even at potentials as low as 4.4 V in 1 M LiPF6 + EC/DEC electrolyte on a LiCoO2 cathode, as indicated by CO2 and O2 evolution. The features of this DEMS cell to unveil solvent and electrolyte decomposition pathways are also described.


Analytical Chemistry | 2010

New Double-Band-Electrode Channel Flow Differential Electrochemical Mass Spectrometry Cell: Application for Detecting Product Formation during Methanol Electrooxidation

Hongsen Wang; Eric Rus; Héctor D. Abruña

We present a new double-band-electrode channel flow DEMS (differential electrochemical mass spectrometry) cell and demonstrate its application in mechanistic studies with particular relevance to fuel cells. The cell is composed of two band electrodes, which serve as working and detecting electrodes, respectively, separated by a porous Teflon membrane. The Teflon membrane serves as the interface between the aqueous solution and vacuum, through which gases and volatile species can be transported. The hydrodynamic electrochemical characteristics and mass spectrometric behavior have been characterized. With this DEMS cell, gaseous and volatile electrochemical products formed at the working electrode are monitored by mass spectrometry, while nonvolatile products can be selectively detected at the detecting (downstream) electrode. Thus, this system can be considered as the DEMS analogue of a rotating ring/disk electrode. As test cases, the electrooxidation of formaldehyde and methanol on carbon supported Pt nanoparticle catalysts have been studied using this new channel flow DEMS cell.


Journal of the American Chemical Society | 2014

An Electrochemical Quartz Crystal Microbalance Study of a Prospective Alkaline Anion Exchange Membrane Material for Fuel Cells: Anion Exchange Dynamics and Membrane Swelling

Jimmy John; Kristina M. Hugar; Johary Rivera-Meléndez; Henry A. Kostalik; Eric Rus; Hongsen Wang; Geoffrey W. Coates; Héctor D. Abruña

A strategy has been devised to study the incorporation and exchange of anions in a candidate alkaline anion exchange membrane (AAEM) material for alkaline fuel cells using the electrochemical quartz crystal microbalance (EQCM) technique. It involves the electro-oxidation of methanol (CH3OH) under alkaline conditions to generate carbonate (CO3(2-)) and formate (HCOO(-)) ions at the electrode of a quartz crystal resonator coated with an AAEM film, while simultaneously monitoring changes in the frequency (Δf) and the motional resistance (ΔR(m)) of the resonator. A decrease in Δf, indicating an apparent mass increase in the film, and a decrease in ΔR(m), signifying a deswelling of the film, were observed during methanol oxidation. A series of additional QCM experiments, in which the effects of CH3OH, CO3(2-), and HCOO(-) were individually examined by changing the solution concentration of these species, confirmed the changes to be due to the incorporation of electrogenerated CO3(2-)/HCOO(-) into the film. Furthermore, the AAEM films were found to have finite anion uptake, validating the expected tolerance of the material to salt precipitation in the AAEM. The EQCM results obtained indicated that HCOO(-) and CO3(2-), in particular, interact strongly with the AAEM film and readily displace OH(-) from the film. Notwithstanding, the anion exchange between CO3(2-)/HCOO(-) and OH(-) was found to be reversible. It is also inferred that the film exhibits increased swelling in the OH(-) form versus the CO3(2-)/HCOO(-) form. Acoustic impedance analysis of the AAEM-film coated quartz resonators immersed in water showed that the hydrated AAEM material exhibits significant viscoelastic effects due to solvent plasticization.


Nature Communications | 2016

Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction

Deli Wang; Sufen Liu; Jie Wang; Ruoqian Lin; Masahiro Kawasaki; Eric Rus; Katharine E. Silberstein; Michael A. Lowe; Feng Lin; Dennis Nordlund; Hongfang Liu; David A. Muller; Huolin L. Xin; Héctor D. Abruña

Replacing platinum by a less precious metal such as palladium, is highly desirable for lowering the cost of fuel-cell electrocatalysts. However, the instability of palladium in the harsh environment of fuel-cell cathodes renders its commercial future bleak. Here we show that by incorporating trace amounts of gold in palladium-based ternary (Pd6CoCu) nanocatalysts, the durability of the catalysts improves markedly. Using aberration-corrected analytical transmission electron microscopy in conjunction with synchrotron X-ray absorption spectroscopy, we show that gold not only galvanically replaces cobalt and copper on the surface, but also penetrates through the Pd–Co–Cu lattice and distributes uniformly within the particles. The uniform incorporation of Au provides a stability boost to the entire host particle, from the surface to the interior. The spontaneous replacement method we have developed is scalable and commercially viable. This work may provide new insight for the large-scale production of non-platinum electrocatalysts for fuel-cell applications.


Review of Scientific Instruments | 2013

An exchangeable-tip scanning probe instrument for the analysis of combinatorial libraries of electrocatalysts

Eric Rus; Hongsen Wang; Anna E. Legard; Nicole L. Ritzert; Robert Bruce Van Dover; Héctor D. Abruña

A combined scanning differential electrochemical mass spectrometer (SDEMS)-scanning electrochemical microscope (SECM) apparatus is described. The SDEMS is used to detect and spatially resolve volatile electrochemically generated species at the surface of a substrate electrode. The SECM can electrochemically probe the reactivity of the surface and also offers a convenient means of leveling the sample. It is possible to switch between these two different scanning tips and techniques without moving the sample and while maintaining potential control of the substrate electrode. A procedure for calibration of the SDEMS tip-substrate separation, based upon the transit time of electrogenerated species from the substrate to the tip is also described. This instrument can be used in the characterization of combinatorial libraries of direct alcohol fuel cell anode catalysts. The apparatus was used to analyze the products of methanol oxidation at a Pt substrate, with the SDEMS detecting carbon dioxide and methyl formate, and a PtPb-modified Pt SECM tip used for the selective detection of formic acid. As an example system, the electrocatalytic methanol oxidation activity of a sputter-deposited binary PtRu composition spread in acidic media was analyzed using the SDEMS. These results are compared with those obtained from a pH-sensitive fluorescence assay.


Chemistry of Materials | 2012

Facile Synthesis of Carbon-Supported Pd–Co Core–Shell Nanoparticles as Oxygen Reduction Electrocatalysts and Their Enhanced Activity and Stability with Monolayer Pt Decoration

Deli Wang; Huolin L. Xin; Hongsen Wang; Yingchao Yu; Eric Rus; David A. Muller; Francis J. DiSalvo; Héctor D. Abruña


Journal of Physical Chemistry C | 2012

Mechanistic Studies of Formate Oxidation on Platinum in Alkaline Medium

Jimmy John; Hongsen Wang; Eric Rus; Héctor D. Abruña

Collaboration


Dive into the Eric Rus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge