Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yingchao Yu is active.

Publication


Featured researches published by Yingchao Yu.


Nature Materials | 2013

Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts

Deli Wang; Huolin L. Xin; Robert Hovden; Hongsen Wang; Yingchao Yu; David A. Muller; Francis J. DiSalvo; Héctor D. Abruña

To enhance and optimize nanocatalyst performance and durability for the oxygen reduction reaction in fuel-cell applications, we look beyond Pt-metal disordered alloys and describe a new class of Pt-Co nanocatalysts composed of ordered Pt(3)Co intermetallic cores with a 2-3 atomic-layer-thick platinum shell. These nanocatalysts exhibited over 200% increase in mass activity and over 300% increase in specific activity when compared with the disordered Pt(3)Co alloy nanoparticles as well as Pt/C. So far, this mass activity for the oxygen reduction reaction is the highest among the Pt-Co systems reported in the literature under similar testing conditions. Stability tests showed a minimal loss of activity after 5,000 potential cycles and the ordered core-shell structure was maintained virtually intact, as established by atomic-scale elemental mapping. The high activity and stability are attributed to the Pt-rich shell and the stable intermetallic Pt(3)Co core arrangement. These ordered nanoparticles provide a new direction for catalyst performance optimization for next-generation fuel cells.


Journal of the American Chemical Society | 2010

Pt-Decorated PdCo@Pd/C Core−Shell Nanoparticles with Enhanced Stability and Electrocatalytic Activity for the Oxygen Reduction Reaction

Deli Wang; Huolin L. Xin; Yingchao Yu; Hongsen Wang; Eric Rus; David A. Muller; Héctor D. Abruña

A simple method for the preparation of PdCo@Pd core-shell nanoparticles supported on carbon based on an adsorbate-induced surface segregation effect has been developed. The stability of these PdCo@Pd nanoparticles and their electrocatalytic activity for the oxygen reduction reaction (ORR) were enhanced by decoration with a small amount of Pt deposited via a spontaneous displacement reaction. The facile method described herein is suitable for large-scale, lower-cost production and significantly lowers the Pt loading and thus the cost. The as-prepared PdCo@Pd and Pd-decorated PdCo@Pd nanocatalysts have a higher methanol tolerance than Pt/C in the ORR and are promising cathode catalysts for fuel cell applications.


Journal of the American Chemical Society | 2013

Lithium–Sulfur Battery Cathode Enabled by Lithium–Nitrile Interaction

Juchen Guo; Zichao Yang; Yingchao Yu; Héctor D. Abruña; Lynden A. Archer

Lithium sulfide is a promising cathode material for high-energy lithium ion batteries because, unlike elemental sulfur, it obviates the need for metallic lithium anodes. Like elemental sulfur, however, a successful lithium sulfide cathode requires an inherent mechanism for preventing lithium polysulfide dissolution and shuttling during electrochemical cycling. A new scheme is proposed to create composites based on lithium sulfide uniformly dispersed in a carbon host, which serve to sequester polysulfides. The synthesis methodology makes use of interactions between lithium ions in solution and nitrile groups uniformly distributed along the chain backbone of a polymer precursor (e.g., polyacrylonitrile), to control the distribution of lithium sulfide in the host material. The Li(2)S-carbon composites obtained by carbonizing the precursor are evaluated as cathode materials in a half-cell lithium battery, and are shown to yield high galvanic charge/discharge capacities and excellent Coulombic efficiency, demonstrating the effectiveness of the architecture in homogeneously distributing Li(2)S and in sequestering lithium polysulfides.


ACS Nano | 2015

Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries.

Deli Wang; Yingchao Yu; Huan He; Jie Wang; Weidong Zhou; Héctor D. Abruña

We have developed a template-free procedure to synthesize Co3O4 hollow-structured nanoparticles on a Vulcan XC-72 carbon support. The material was synthesized via an impregnation-reduction method followed by air oxidation. In contrast to spherical particles, the hollow-structured Co3O4 nanoparticles exhibited excellent lithium storage capacity, rate capability, and cycling stability when used as the anode material in lithium-ion batteries. Electrochemical testing showed that the hollow-structured Co3O4 particles delivered a stable reversible capacity of about 880 mAh/g (near the theoretical capacity of 890 mAh/g) at a current density of 50 mA/g after 50 cycles. The superior electrochemical performance is attributed to its unique hollow structure, which combines nano- and microscale properties that facilitate electron transfer and enhance structural robustness.


ACS Nano | 2013

Amylopectin wrapped graphene oxide/sulfur for improved cyclability of lithium-sulfur battery.

Weidong Zhou; Hao Chen; Yingchao Yu; Deli Wang; Zhiming Cui; Francis J. DiSalvo; Héctor D. Abruña

An amylopectin wrapped graphene oxide-sulfur composite was prepared to construct a 3-dimensionally cross-linked structure through the interaction between amylopectin and graphene oxide, for stabilizing lithium sulfur batteries. With the help of this cross-linked structure, the sulfur particles could be confined much better among the layers of graphene oxide and exhibited significantly improved cyclability, compared with the unwrapped graphene oxide-sulfur composite. The effect of the electrode mass loading on electrochemical performance was investigated as well. In the lower sulfur mass loading cells, such as 2 mg cm(-2), both the capacity and the efficiency were obviously better than those of the higher sulfur mass loading cells, such as 6 mg cm(-2).


Nano Letters | 2014

Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte.

Megan E. Holtz; Yingchao Yu; Deniz Gunceler; Jie Gao; Ravishankar Sundararaman; Kathleen A. Schwarz; T. A. Arias; Héctor D. Abruña; David A. Muller

A major challenge in the development of new battery materials is understanding their fundamental mechanisms of operation and degradation. Their microscopically inhomogeneous nature calls for characterization tools that provide operando and localized information from individual grains and particles. Here, we describe an approach that enables imaging the nanoscale distribution of ions during electrochemical charging of a battery in a transmission electron microscope liquid flow cell. We use valence energy-loss spectroscopy to track both solvated and intercalated ions, with electronic structure fingerprints of the solvated ions identified using an ab initio nonlinear response theory. Equipped with the new electrochemical cell holder, nanoscale spectroscopy and theory, we have been able to determine the lithiation state of a LiFePO4 electrode and surrounding aqueous electrolyte in real time with nanoscale resolution during electrochemical charge and discharge. We follow lithium transfer between electrode and electrolyte and image charging dynamics in the cathode. We observe competing delithiation mechanisms such as core-shell and anisotropic growth occurring in parallel for different particles under the same conditions. This technique represents a general approach for the operando nanoscale imaging of electrochemically active ions in the electrode and electrolyte in a wide range of electrical energy storage systems.


Nano Letters | 2012

Three-Dimensional Tracking and Visualization of Hundreds of Pt−Co Fuel Cell Nanocatalysts During Electrochemical Aging

Yingchao Yu; Huolin L. Xin; Robert Hovden; Deli Wang; Eric Rus; Julia A. Mundy; David A. Muller; Héctor D. Abruña

We present an electron tomography method that allows for the identification of hundreds of electrocatalyst nanoparticles with one-to-one correspondence before and after electrochemical aging. This method allows us to track, in three-dimensions, the trajectories and morphologies of each Pt-Co nanocatalyst on a fuel cell carbon support. In conjunction with the use of atomic-scale electron energy loss spectroscopic imaging, our experiment enables the correlation of performance degradation of the catalyst with changes in particle/interparticle morphologies, particle-support interactions, and the near-surface chemical composition. We found that aging of the catalysts under normal fuel cell operating conditions (potential scans from +0.6 to +1.0 V for 30,000 cycles) gives rise to coarsening of the nanoparticles, mainly through coalescence, which in turn leads to the loss of performance. The observed coalescence events were found to be the result of nanoparticle migration on the carbon support during potential cycling. This method provides detailed insights into how nanocatalyst degradation occurs in proton exchange membrane fuel cells (PEMFCs) and suggests that minimization of particle movement can potentially slow down the coarsening of the particles and the corresponding performance degradation.


Journal of Materials Chemistry | 2013

In situ synthesis of lithium sulfide–carbon composites as cathode materials for rechargeable lithium batteries

Zichao Yang; Juchen Guo; Shyamal K. Das; Yingchao Yu; Zhehao Zhou; Héctor D. Abruña; Lynden A. Archer

Lithium–sulfur batteries are among the most promising candidates for next-generation rechargeable lithium batteries in view of recent progress on sulfur–carbon composite cathodes. However, further progress on such batteries is hampered by their concomitant need for a metallic lithium anode, which introduces new challenges associated with uneven electrodeposition and lithium dendrite formation. Here we report a method of creating lithium sulfide–carbon composites as cathode materials, which can be paired with high-capacity anodes other than metallic lithium. Lithium sulfide is dispersed in a porous carbon matrix, which serves to improve its electrical conductivity and provides a framework for sequestration of sulfur and lithium polysulfides. The in situ synthesis approach allows facile, scalable synthesis of lithium sulfide–carbon composite materials that exhibit improved electrochemical properties. We also investigate the effect of lithium polysulfides dissolved in the electrolyte on the stability and cycling behavior of Li2S–carbon composite cathodes.


Journal of the American Chemical Society | 2014

Synthesis of Structurally Ordered Pt3Ti and Pt3V Nanoparticles as Methanol Oxidation Catalysts

Zhiming Cui; Hao Chen; Mengtian Zhao; Daniel Marshall; Yingchao Yu; Héctor D. Abruña; Francis J. DiSalvo

Structurally ordered Pt3Ti or Pt3V intermetallic nanoparticle catalysts with ultrasmall particle sizes have never been successfully synthesized. Herein, we present a KCl-nanoparticle method to successfully provide such compounds. These two catalysts show enhanced catalytic activity and stability for methanol oxidation compared to pure Pt.


Microscopy and Microanalysis | 2012

In situ electron energy-loss spectroscopy in liquids.

Megan E. Holtz; Yingchao Yu; Jie Gao; Héctor D. Abruña; David A. Muller

In situ scanning transmission electron microscopy (STEM) through liquids is a promising approach for exploring biological and materials processes. However, options for in situ chemical identification are limited: X-ray analysis is precluded because the liquid cell holder shadows the detector and electron energy-loss spectroscopy (EELS) is degraded by multiple scattering events in thick layers. Here, we explore the limits of EELS in the study of chemical reactions in their native environments in real time and on the nanometer scale. The determination of the local electron density, optical gap, and thickness of the liquid layer by valence EELS is demonstrated. By comparing theoretical and experimental plasmon energies, we find that liquids appear to follow the free-electron model that has been previously established for solids. Signals at energies below the optical gap and plasmon energy of the liquid provide a high signal-to-background ratio regime as demonstrated for LiFePO4 in an aqueous solution. The potential for the use of valence EELS to understand in situ STEM reactions is demonstrated for beam-induced deposition of metallic copper: as copper clusters grow, EELS develops low-loss peaks corresponding to metallic copper. From these techniques, in situ imaging and valence EELS offer insights into the local electronic structure of nanoparticles and chemical reactions.

Collaboration


Dive into the Yingchao Yu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge