Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric S. Sweet is active.

Publication


Featured researches published by Eric S. Sweet.


Molecular Neurobiology | 2008

The Yin–Yang of Dendrite Morphology: Unity of Actin and Microtubules

Penelope C. Georges; Norell M. Hadzimichalis; Eric S. Sweet; Bonnie L. Firestein

Actin and microtubules (MT) are targets of numerous molecular pathways that control neurite outgrowth. To generate a neuronal protrusion, coordinated structural changes of the actin and MT cytoskeletons must occur. Neurite formation occurs when actin filaments (F-actin) are destabilized, filopodia are extended, and MTs invade filopodia. This process results in either axon or dendrite formation. Axonal branching involves interplay between F-actin and MTs, with F-actin and MTs influencing polymerization, stabilization, and maintenance of each other. Our knowledge of the mechanisms regulating development of the axon, however, far eclipses our understanding of dendritic development and branching. The two classes of neurites, while fundamentally similar in their ability to elongate and branch, dramatically differ in growth rate, orientation of polarized MT bundles, and mechanisms that initiate branching. In this review, we focus on how F-actin, MTs, and proteins that link the two cytoskeletons coordinate to specifically initiate dendritic events.


Neuropsychopharmacology | 2014

Parental THC exposure leads to compulsive heroin-seeking and altered striatal synaptic plasticity in the subsequent generation.

Henrietta Szutorisz; Jennifer A. DiNieri; Eric S. Sweet; Gabor Egervari; Michael Michaelides; Jenna M. Carter; Yanhua Ren; Michael L. Miller; Robert D. Blitzer; Yasmin L. Hurd

Recent attention has been focused on the long-term impact of cannabis exposure, for which experimental animal studies have validated causal relationships between neurobiological and behavioral alterations during the individual’s lifetime. Here, we show that adolescent exposure to Δ9-tetrahydrocannabinol (THC), the main psychoactive component of cannabis, results in behavioral and neurobiological abnormalities in the subsequent generation of rats as a consequence of parental germline exposure to the drug. Adult F1 offspring that were themselves unexposed to THC displayed increased work effort to self-administer heroin, with enhanced stereotyped behaviors during the period of acute heroin withdrawal. On the molecular level, parental THC exposure was associated with changes in the mRNA expression of cannabinoid, dopamine, and glutamatergic receptor genes in the striatum, a key component of the neuronal circuitry mediating compulsive behaviors and reward sensitivity. Specifically, decreased mRNA and protein levels, as well as NMDA receptor binding were observed in the dorsal striatum of adult offspring as a consequence of germline THC exposure. Electrophysiologically, plasticity was altered at excitatory synapses of the striatal circuitry that is known to mediate compulsive and goal-directed behaviors. These findings demonstrate that parental history of germline THC exposure affects the molecular characteristics of the striatum, can impact offspring phenotype, and could possibly confer enhanced risk for psychiatric disorders in the subsequent generation.


Cytometry Part A | 2010

Automated Sholl analysis of digitized neuronal morphology at multiple scales: Whole cell Sholl analysis versus Sholl analysis of arbor subregions

Christopher G. Langhammer; Michelle L. Previtera; Eric S. Sweet; Simranjeet S. Sran; Maxine Chen; Bonnie L. Firestein

The morphology of dendrites and the axon determines how a neuron processes and transmits information. Neurite morphology is frequently analyzed by Sholl analysis or by counting the total number of neurites and branch tips. However, the time and resources required to perform such analysis by hand is prohibitive for the processing of large data sets and introduces problems with data auditing and reproducibility. Furthermore, analyses performed by hand or using course‐grained morphometric data extraction tools can obscure subtle differences in data sets because they do not store the data in a form that facilitates the application of multiple analytical tools. To address these shortcomings, we have developed a program (titled “Bonfire”) to facilitate digitization of neurite morphology and subsequent Sholl analysis. Our program builds upon other available open‐source morphological analysis tools by performing Sholl analysis on subregions of the neuritic arbor, enabling the detection of local level changes in dendrite and axon branching behavior. To validate this new tool, we applied Bonfire analysis to images of hippocampal neurons treated with 25 ng/ml brain‐derived neurotrophic factor (BDNF) and untreated control neurons. Consistent with prior findings, conventional Sholl analysis revealed that global exposure to BDNF increases the number of neuritic intersections proximal to the soma. Bonfire analysis additionally uncovers that BDNF treatment affects both root processes and terminal processes with no effect on intermediate neurites. Taken together, our data suggest that global exposure of hippocampal neurons to BDNF results in a reorganization of neuritic segments within their arbors, but not necessarily a change in their number or length. These findings were only made possible by the neurite‐specific Sholl data returned by Bonfire analysis.


The Journal of Neuroscience | 2011

PSD-95 Alters Microtubule Dynamics via an Association With EB3

Eric S. Sweet; Michelle L. Previtera; José R. Fernández; Erik I. Charych; Chia-Yi Tseng; Munjin Kwon; Valentin Starovoytov; James Q. Zheng; Bonnie L. Firestein

Little is known about how the neuronal cytoskeleton is regulated when a dendrite decides whether to branch or not. Previously, we reported that postsynaptic density protein 95 (PSD-95) acts as a stop signal for dendrite branching. It is yet to be elucidated how PSD-95 affects the cytoskeleton and how this regulation relates to the dendritic arbor. Here, we show that the SH3 (src homology 3) domain of PSD-95 interacts with a proline-rich region within the microtubule end-binding protein EB3. Overexpression of PSD-95 or mutant EB3 results in a decreased lifetime of EB3 comets in dendrites. In line with these data, transfected rat neurons show that overexpression of PSD-95 results in less organized microtubules at dendritic branch points and decreased dendritogensis. The interaction between PSD-95 and EB3 elucidates a function for a novel region of EB3 and provides a new and important mechanism for the regulation of microtubules in determining dendritic morphology.


The Journal of Neuroscience | 2015

The Parkinson's Disease-Associated Mutation LRRK2-G2019S Impairs Synaptic Plasticity in Mouse Hippocampus

Eric S. Sweet; Bernadette Saunier-Rebori; Zhenyu Yue; Robert D. Blitzer

Parkinsons disease (PD) is a major movement disorder characterized by the loss of dopamine neurons and formation of Lewy bodies. Clinical and pathological evidence indicates that multiple brain regions are affected in PD in a spatiotemporal manner and are associated with a variety of motor and nonmotor symptoms, including disturbances in mood, executive function, and memory. The common PD-associated gene for leucine-rich repeat kinase, leucine-rich repeat kinase 2 (LRRK2), is highly expressed in brain regions that are involved with nonmotor functions, including the neocortex and hippocampus, but whether mutant LRRK2 contributes to neuronal dysfunction in these regions is unknown. Here, we use bacterial artificial chromosome transgenic mouse models of LRRK2 to explore potential nonmotor mechanisms of PD. Through electrophysiological analysis of the Schaffer collateral–CA1 synapse in dorsal hippocampus, we find that overexpression of LRRK2-G2019S increases basal synaptic efficiency through a postsynaptic mechanism, and disrupts long-term depression. Furthermore, these effects of the G2019S mutation are age dependent and can be normalized by acute inhibition of LRRK2 kinase activity. In contrast, overexpression of wild-type LRRK2 has no effect under the same conditions, suggesting a specific phenotype for the G2019S mutation. These results identify a pathogenic function of LRRK2 in the hippocampus that may contribute to nonmotor symptoms of PD. SIGNIFICANCE STATEMENT Parkinsons disease (PD) is among the most common neurological diseases and is best known for its adverse effects on brain regions that control motor function, resulting in tremor, rigidity, and gait abnormalities. Less well appreciated are the psychiatric symptoms experienced by many PD patients, including depression and memory loss, which do not respond well to currently available treatments for PD. Here, we describe functional effects of a common PD-linked mutation of leucine-rich repeat kinase 2 in the mouse hippocampus, an area of the brain that is responsible for encoding and retaining memories. By providing a potential mechanism for some of the cognitive symptoms produced by this mutation, our findings may lead to novel approaches for the treatment of nonmotor symptoms of PD.


Bioorganic & Medicinal Chemistry | 2010

Identification of small molecule compounds with higher binding affinity to guanine deaminase (cypin) than guanine

José R. Fernández; Eric S. Sweet; William J. Welsh; Bonnie L. Firestein

Guanine deaminase (GDA; cypin) is an important metalloenzyme that processes the first step in purine catabolism, converting guanine to xanthine by hydrolytic deamination. In higher eukaryotes, GDA also plays an important role in the development of neuronal morphology by regulating dendritic arborization. In addition to its role in the maturing brain, GDA is thought to be involved in proper liver function since increased levels of GDA activity have been correlated with liver disease and transplant rejection. Although mammalian GDA is an attractive and potential drug target for treatment of both liver diseases and cognitive disorders, prospective novel inhibitors and/or activators of this enzyme have not been actively pursued. In this study, we employed the combination of protein structure analysis and experimental kinetic studies to seek novel potential ligands for human guanine deaminase. Using virtual screening and biochemical analysis, we identified common small molecule compounds that demonstrate a higher binding affinity to GDA than does guanine. In vitro analysis demonstrates that these compounds inhibit guanine deamination, and more surprisingly, affect GDA (cypin)-mediated microtubule assembly. The results in this study provide evidence that an in silico drug discovery strategy coupled with in vitro validation assays can be successfully implemented to discover compounds that may possess therapeutic value for the treatment of diseases and disorders where GDA activity is abnormal.


BioArchitecture | 2011

To branch or not to branch: How PSD-95 regulates dendrites and spines.

Eric S. Sweet; Chia-Yi Tseng; Bonnie L. Firestein

PSD-95, a synaptic scaffolding protein, plays important roles in the regulation of dendritic spine morphology and glutamate receptor signaling. We have recently shown that PSD-95 also plays an extrasynaptic role during development. PSD-95 shapes dendrite branching patterns in cultured rat hippocampal neurons by altering microtubule dynamics via an association with the microtubule end-binding protein-3 (EB3). We discovered that PSD-95 interacts directly with EB3 and that the result of this interaction decreases EB3 binding to and EB3 comet lifetime on microtubules. This decrease in lifetime also correlates to decreased dendrite branching. Here we present an additional effect of PSD-95 overexpression on microtubules. Neurons that overexpress PSD-95 show increased distance between microtubules in a manner that is not fully dependent on the interaction between PSD-95 and EB3. We discuss these new data in the context of the role of PSD-95 in shaping the dendritic arbor and we extend our findings to include a discussion of how PSD-95 may guide neurons toward a more mature and synapse-oriented growth stage.


Methods of Molecular Biology | 2013

Semiautomated Analysis of Dendrite Morphology in Cell Culture

Eric S. Sweet; Chris L. Langhammer; Melinda K. Kutzing; Bonnie L. Firestein

Quantifying dendrite morphology is a method for determining the effect of biochemical pathways and extracellular agents on neuronal development and differentiation. Quantification can be performed using Sholl analysis, dendrite counting, and length quantification. These procedures can be performed on dendrite-forming cell lines or primary neurons grown in culture. In this protocol, we describe the use of a set of computer programs to assist in quantifying many aspects of dendrite morphology, including changes in total and localized arbor complexity.


Current Biology | 2008

Neuronal Polarization: Old Cells Can Learn New Tricks

Eric S. Sweet; Bonnie L. Firestein

Regeneration was once thought to be exclusive to young neurons. Now, a new study shows that functional and interconnected hippocampal neurons have the potential to quickly recover from losing an axon. They do so by signaling a dendrite to change its specification and replace the missing axon by rearranging the microtubule cytoskeleton.


Neurobiology of Disease | 2018

Cypin: A novel target for traumatic brain injury

Przemyslaw Swiatkowski; Emily Sewell; Eric S. Sweet; Samantha Dickson; Rachel A. Swanson; Sara A. McEwan; Nicholas Cuccolo; Mark E. McDonnell; Mihir V. Patel; Nevin Varghese; Barclay Morrison; Allen B. Reitz; David F. Meaney; Bonnie L. Firestein

Cytosolic PSD-95 interactor (cypin), the primary guanine deaminase in the brain, plays key roles in shaping neuronal circuits and regulating neuronal survival. Despite this pervasive role in neuronal function, the ability for cypin activity to affect recovery from acute brain injury is unknown. A key barrier in identifying the role of cypin in neurological recovery is the absence of pharmacological tools to manipulate cypin activity in vivo. Here, we use a small molecule screen to identify two activators and one inhibitor of cypins guanine deaminase activity. The primary screen identified compounds that change the initial rate of guanine deamination using a colorimetric assay, and secondary screens included the ability of the compounds to protect neurons from NMDA-induced injury and NMDA-induced decreases in frequency and amplitude of miniature excitatory postsynaptic currents. Hippocampal neurons pretreated with activators preserved electrophysiological function and survival after NMDA-induced injury in vitro, while pretreatment with the inhibitor did not. The effects of the activators were abolished when cypin was knocked down. Administering either cypin activator directly into the brain one hour after traumatic brain injury significantly reduced fear conditioning deficits 5 days after injury, while delivering the cypin inhibitor did not improve outcome after TBI. Together, these data demonstrate that cypin activation is a novel approach for improving outcome after TBI and may provide a new pathway for reducing the deficits associated with TBI in patients.

Collaboration


Dive into the Eric S. Sweet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert D. Blitzer

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge