Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric Stadler is active.

Publication


Featured researches published by Eric Stadler.


Astronomical Telescopes and Instrumentation | 2003

NAOS, the first AO system of the VLT: on-sky performance

Gerard Rousset; Francois Lacombe; Pascal Puget; Norbert Hubin; Eric Gendron; Thierry Fusco; Robin Arsenault; Julien Charton; Philippe Feautrier; Pierre Gigan; P. Kern; Anne-Marie Lagrange; Pierre-Yves Madec; David Mouillet; Didier Rabaud; Patrick Rabou; Eric Stadler; G. Zins

NAOS is the first adaptive optics system installed at the VLT 8m telescopes. It was designed, manufactured and tested by a french Consortium under an ESO contract, to provide compensated images to the high angular resolution IR spectro-imaging camera (CONICA) in the 1 to 5 μm spectral range. It is equipped with a 185 actuator deformable mirror, a tip/tilt mirror and two wavefront sensors, one in the visible and one in the near IR spectral range. It has been installed in November at the Nasmyth focus B of the VLT UT4. During the first light run in December 2001, NAOS has delivered a Strehl ratio of 50 under average seeing conditions for bright guide stars. The diffraction limit of the telescope has been achieved at 2.2 μm. The closed loop operation has been very robust under bad seeing conditions. It was also possible to obtain a substantial correction with mV=17.6 and mK=13.1 reference stars. The on-sky acceptance tests of NAOS-CONICA were completed in May 2002 and the instrument will be made available to the European astronomical community in October by ESO. This paper describes the system and present the on-sky performance in terms of Strehl ratio, seeing conditions and guide star magnitude.


Astronomy and Astrophysics | 2011

PIONIER: a 4-telescope visitor instrument at VLTI

J.-B. Le Bouquin; J. Berger; B. Lazareff; G. Zins; P. Haguenauer; L. Jocou; P. Kern; R. Millan-Gabet; Wesley A. Traub; Olivier Absil; J.-C. Augereau; M. Benisty; N. Blind; Xavier Bonfils; Pierre Bourget; A. Delboulbé; Philippe Feautrier; M. Germain; Philippe B. Gitton; D. Gillier; M. Kiekebusch; J. Kluska; Jens Knudstrup; Pierre Labeye; J.-L. Lizon; Jean-Louis Monin; Y. Magnard; F. Malbet; D. Maurel; Francois Menard

PIONIER stands for Precision Integrated-Optics Near-infrared Imaging ExpeRiment. It combines four 1.8m Auxilliary Telescopes or four 8m Unit Telescopes of the Very Large Telescope Interferometer (ESO, Chile) using an integrated optics combiner. The instrument has been integrated at IPAG starting in December 2009 and commissioned at the Paranal Observatory in October 2010. It provides scientific observations since November 2010. In this paper, we detail the instrumental concept, we describe the standard operational modes and the data reduction strategy. We present the typical performance and discuss how to improve them. This paper is based on laboratory data obtained during the integrations at IPAG, as well as on-sky data gathered during the commissioning at VLTI. We illustrate the imaging capability of PIONIER on the binaries deltaSco and HIP11231. PIONIER provides 6 visibilities and 3 independent closure phases in the H band, either in a broadband mode or with a low spectral dispersion (R=40), using natural light (i.e. unpolarized). The limiting magnitude is Hmag=7 in dispersed mode under median atmospheric conditions (seeing 3ms) with the 1.8m Auxiliary Telescopes. We demonstrate a precision of 0.5deg on the closure phases. The precision on the calibrated visibilities ranges from 3 to 15% depending on the atmospheric conditions. PIONIER has been installed and successfully tested as a visitor instrument for the VLTI. It permits high angular resolution imaging studies at an unprecedented level of sensitivity. The successful combination of the four 8m Unit Telescopes in March 2011 demonstrates that VLTI is ready for 4-telescope operation.


Astronomy and Astrophysics | 2016

First light of the VLT planet finder SPHERE III. New spectrophotometry and astrometry of the HR 8799 exoplanetary system

A. Zurlo; A. Vigan; R. Galicher; A.-L. Maire; D. Mesa; R. Gratton; G. Chauvin; M. Kasper; Claire Moutou; M. Bonnefoy; S. Desidera; Lyu Abe; Daniel Apai; Andrea Baruffolo; Pierre Baudoz; J. Baudrand; J.-L. Beuzit; P. Blancard; A. Boccaletti; F. Cantalloube; M. Carle; E. Cascone; Julien Charton; R. U. Claudi; A. Costille; V. De Caprio; Kjetil Dohlen; C. Dominik; D. Fantinel; Philippe Feautrier

Context. The planetary system discovered around the young A-type HR 8799 provides a unique laboratory to: a) test planet formation theories; b) probe the diversity of system architectures at these separations, and c) perform comparative (exo)planetology. Aims. We present and exploit new near-infrared images and integral-field spectra of the four gas giants surrounding HR 8799 obtained with SPHERE, the new planet finder instrument at the Very Large Telescope, during the commissioning and science verification phase of the instrument (July–December 2014). With these new data, we contribute to completing the spectral energy distribution (SED) of these bodies in the 1.0–2.5 μm range. We also provide new astrometric data, in particular for planet e, to further constrain the orbits. Methods. We used the infrared dual-band imager and spectrograph (IRDIS) subsystem to obtain pupil-stabilized, dual-band H2H3 (1.593 μm, 1.667 μm), K1K2 (2.110 μm, 2.251 μm), and broadband J (1.245 μm) images of the four planets. IRDIS was operated in parallel with the integral field spectrograph (IFS) of SPHERE to collect low-resolution (R ~ 30), near-infrared (0.94–1.64 μm) spectra of the two innermost planets HR 8799 d and e. The data were reduced with dedicated algorithms, such as the Karhunen-Loeve image projection (KLIP), to reveal the planets. We used the so-called negative planets injection technique to extract their photometry, spectra, and measure their positions. We illustrate the astrometric performance of SPHERE through sample orbital fits compatible with SPHERE and literature data. Results. We demonstrated the ability of SPHERE to detect and characterize planets in this kind of systems, providing spectra and photometry of its components. The spectra improve upon the signal-to-noise ratio of previously obtained data and increase the spectral coverage down to the Y band. In addition, we provide the first detection of planet e in the J band. Astrometric positions for planets HR 8799 bcde are reported for the epochs of July, August, and December 2014. We measured the photometric values in J, H2H3, K1K2 bands for the four planets with a mean accuracy of 0.13 mag. We found upper limit constraints on the mass of a possible planet f of 3–7 MJup . Our new measurements are more consistent with the two inner planets d and e being in a 2d:1e or 3d:2e resonance. The spectra of HR 8799 d and e are well matched by those of L6-8 field dwarfs. However, the SEDs of these objects are redder than field L dwarfs longward of 1.6 μm.


Astronomical Telescopes and Instrumentation | 2000

Status of the VLT Nasmyth adaptive optics system (NAOS)

Gerard Rousset; Francois Lacombe; Pascal Puget; Eric Gendron; Robin Arsenault; P. Kern; Didier Rabaud; Pierre-Yves Madec; Norbert Hubin; G. Zins; Eric Stadler; Julien Charton; Pierre Gigan; Philippe Feautrier

NAOS is the adaptive optics system to be installed at one of the Nasmyth focus of the VLT. It was designed and manufactured by a French Consortium to provide compensated images to the high angular resolution IR spectro-imaging camera (CONICA) in the 1 to 5 micrometer spectral range. For bright sources, NAOS will achieve a Strehl ratio of 70% under average seeing conditions. It is equipped with a 185 actuator deformable mirror, a tip/tilt mirror and two wavefront sensors, one in the visible and one in the near IR. All the components of NAOS have been delivered and the integration phase is in progress since the beginning of 2000. After extensive tests and performance verifications in France, the system will be shipped to Chile by the end of 2000. The first light at the VLT is foreseen in the beginning of 2001.


Astronomy and Astrophysics | 2016

First light of the VLT planet finder SPHERE I. Detection and characterization of the substellar companion GJ 758 B

A. Vigan; M. Bonnefoy; C. Ginski; H. Beust; R. Galicher; Markus Janson; J.-L. Baudino; Esther Buenzli; J. Hagelberg; Valentina D'Orazi; S. Desidera; A.-L. Maire; R. Gratton; Jean-François Sauvage; G. Chauvin; C. Thalmann; L. Malo; G. Salter; A. Zurlo; J. Antichi; Andrea Baruffolo; Pierre Baudoz; P. Blanchard; A. Boccaletti; J.-L. Beuzit; M. Carle; R. U. Claudi; A. Costille; A. Delboulbé; Kjetil Dohlen

GJ 758 B is a brown dwarf companion to a nearby (15.76%) solar-type, metal-rich (M/H = +0.2 dex) main-sequence star (G9V) that was discovered with Subaru/HiCIAO in 2009. From previous studies, it has drawn attention as being the coldest (similar to 600 K) companion ever directly imaged around a neighboring star. We present new high-contrast data obtained during the commissioning of the SPHERE instrument at the Very Large Telescope (VLT). The data was obtained in Y-, J-, H-, and K-s-bands with the dual-band imaging (DBI) mode of IRDIS, thus providing a broad coverage of the full near-infrared (near-IR) range at higher contrast and better spectral sampling than previously reported. In this new set of high-quality data, we report the re-detection of the companion, as well as the first detection of a new candidate closer-in to the star. We use the new eight photometric points for an extended comparison of GJ 758 B with empirical objects and four families of atmospheric models. From comparison to empirical object, we estimate a T8 spectral type, but none of the comparison objects can accurately represent the observed near-IR fluxes of GJ 758 B. From comparison to atmospheric models, we attribute a T-eff = 600 +/- 100 K, but we find that no atmospheric model can adequately fit all the fluxes of GJ 758 B. The lack of exploration of metal enrichment in model grids appears as a major limitation that prevents an accurate estimation of the companion physical parameters. The photometry of the new candidate companion is broadly consistent with L-type objects, but a second epoch with improved photometry is necessary to clarify its status. The new astrometry of GJ 758 B shows a significant proper motion since the last epoch. We use this result to improve the determination of the orbital characteristics using two fitting approaches: Least-Squares Monte Carlo and Markov chain Monte Carlo. We confirm the high-eccentricity of the orbit (peak at 0.5), and find a most likely semi-major axis of 46.05 AU. We also use our imaging data, as well as archival radial velocity data, to reject the possibility that this is a false positive effect created by an unseen, closer-in, companion. Finally, we analyze the sensitivity of our data to additional closer-in companions and reject the possibility of other massive brown dwarf companions down to 4-5 AU.


Astronomy and Astrophysics | 2016

First light of the VLT planet finder SPHERE IV : Physical and chemical properties of the planets around HR8799

M. Bonnefoy; A. Zurlo; J.-L. Baudino; Philip W. Lucas; D. Mesa; A. L. Maire; A. Vigan; R. Galicher; D. Homeier; F. Marocco; R. Gratton; G. Chauvin; F. Allard; S. Desidera; M. Kasper; Claire Moutou; A.-M. Lagrange; J. Antichi; Andrea Baruffolo; J. Baudrand; J.-L. Beuzit; A. Boccaletti; F. Cantalloube; M. Carbillet; Julien Charton; R. U. Claudi; A. Costille; Kjetil Dohlen; C. Dominik; D. Fantinel

Context. The system of fourplanets discovered around the intermediate-mass star HR8799 offers a unique opportunity to test planet formation theories at large orbital radii and to probe the physics and chemistry at play in the atmospheres of self-luminous young (~30 Myr) planets. We recently obtained new photometry of the four planets and low-resolution (R ~ 30) spectra of HR8799 d and e with the SPHERE instrument (Paper III). Aims. In this paper (Paper IV), we aim to use these spectra and available photometry to determine how they compare to known objects, what the planet physical properties are, and how their atmospheres work. Methods. We compare the available spectra, photometry, and spectral energy distribution (SED) of the planets to field dwarfs and young companions. In addition, we use the extinction from corundum, silicate (enstatite and forsterite), or iron grains likely to form in the atmosphere of the planets to try to better understand empirically the peculiarity of their spectrophotometric properties. To conclude, we use three sets of atmospheric models (BT-SETTL14, Cloud-AE60, Exo-REM) to determine which ingredients are critically needed in the models to represent the SED of the objects, and to constrain their atmospheric parameters (T_(eff), log g, M/H). Results. We find that HR8799d and e properties are well reproduced by those of L6-L8 dusty dwarfs discovered in the field, among which some are candidate members of young nearby associations. No known object reproduces well the properties of planets b and c. Nevertheless, we find that the spectra and WISE photometry of peculiar and/or young early-T dwarfs reddened by submicron grains made of corundum, iron, enstatite, or forsterite successfully reproduce the SED of these planets. Our analysis confirms that only the Exo-REM models with thick clouds fit (within 2σ) the whole set of spectrophotometric datapoints available for HR8799 d and e for T_(eff) = 1200 K, log g in the range 3.0−4.5, and M/H = +0.5. The models still fail to reproduce the SED of HR8799c and b. The determination of the metallicity, log g, and cloud thickness are degenerate. Conclusions. Our empirical analysis and atmospheric modelling show that an enhanced content in dust and decreased CIA of H_2 is certainly responsible for the deviation of the properties of the planet with respect to field dwarfs. The analysis suggests in addition that HR8799c and b have later spectral types than the two other planets, and therefore could both have lower masses.


Astronomy and Astrophysics | 2006

Five new very low mass binaries

G. Montagnier; D. Segransan; J.-L. Beuzit; T. Forveille; P. Delorme; Xavier Delfosse; C. Perrier; S. Udry; M. Mayor; G. Chauvin; Anne-Marie Lagrange; David Mouillet; T. Fusco; Pierre Gigan; Eric Stadler

Laboratoire d’´Etudes Spatiales et d’Instrumentation Astrophysique, F-9 2195 Meudon Cedex, FranceReceivedAbstract.We report the discovery of companions to 5 nearby late M dwarfs (>M5), LHS1901, LHS4009, LHS6167,LP869-26 and WT460, and we confirm that the recently discovered mid-T brown dwarf companion to SCR1845-6357 is physically bound to that star. These discoveries result from our adaptive optics survey of all M dwarfswithin 12 pc. The new companions have spectral types M5 to L1, and orbital separations between 1 and 10 AU.They add significantly to the number of late M dwarfs binaries in the immediate solar neighbourhood, and willimprove the multiplicity statistics of late M dwarfs. The expected periods range from 3 to 130 years. Several pairsthus have good potential for accurate mass determination in this poorly sampled mass range.Key words. binaries: visual – stars: low mass, brown dwarfs – techniques: adaptive optics


Monthly Notices of the Royal Astronomical Society | 2016

Experience with wavefront sensor and deformable mirror interfaces for wide-field adaptive optics systems

Alastair Basden; David Atkinson; Nazim Ali Bharmal; Urban Bitenc; M. Brangier; T. Buey; T. Butterley; Diego Cano; Fanny Chemla; Paul J. Clark; M. Cohen; Jean-Marc Conan; F. J. de Cos; Colin Dickson; N. A. Dipper; Colin N. Dunlop; Philippe Feautrier; T. Fusco; J.-L. Gach; Eric Gendron; Deli Geng; Stephen J. Goodsell; Damien Gratadour; Alan H. Greenaway; Andrés Guesalaga; C. D. Guzman; David H. Henry; Daniel Hölck; Z. Hubert; Jean-Michel Huet

Recent advances in adaptive optics (AO) have led to the implementation of wide field-of-view AO systems. A number of wide-field AO systems are also planned for the forthcoming Extremely Large Telescopes. Such systems have multiple wavefront sensors of different types, and usually multiple deformable mirrors (DMs). Here, we report on our experience integrating cameras and DMs with the real-time control systems of two wide-field AO systems. These are CANARY, which has been operating on-sky since 2010, and DRAGON, which is a laboratory AO real-time demonstrator instrument. We detail the issues and difficulties that arose, along with the solutions we developed. We also provide recommendations for consideration when developing future wide-field AO systems.


Proceedings of SPIE | 2010

System study of EPICS: the exoplanets imager for the E-ELT

Christophe Verinaud; Markus Kasper; Jean-Luc Beuzit; R. Gratton; D. Mesa; Emmanuel Aller-Carpentier; Enrico Fedrigo; Lyu Abe; Pierre Baudoz; A. Boccaletti; Mariangela Bonavita; Kjetil Dohlen; Norbert Hubin; Florian Kerber; Visa Korkiakoski; J. Antichi; Patrice Martinez; Patrick Rabou; Ronald Roelfsema; Hans Martin Schmid; Niranjan Thatte; G. Salter; Matthias Tecza; Lars Venema; Hiddo Hanenburg; Rieks Jager; Natalia Yaitskova; Olivier Preis; Mélanie Orecchia; Eric Stadler

ESO and a large European consortium completed the phase-A study of EPICS, an instrument dedicated to exoplanets direct imaging for the EELT. The very ambitious science goals of EPICS, the imaging of reflected light of mature gas giant exoplanets around bright stars, sets extremely strong requirements in terms of instrumental contrast achievable. The segmented nature of an ELT appears as a very large source of quasi-static high order speckles that can impair the detection of faint sources with small brightness contrast with respect to their parent star. The paper shows how the overall system has been designed in order to maximize the efficiency of quasi-static speckles rejection by calibration and post-processing using the spectral and polarization dependency of light waves. The trade-offs that led to the choice of the concepts for common path and diffraction suppression system is presented. The performance of the instrument is predicted using simulations of the extreme Adaptive Optics system and polychromatic wave-front propagation through the various optical elements.


Proceedings of SPIE | 2006

Custom CCD for adaptive optics applications

Mark Downing; Robin Arsenault; Dietrich Baade; Philippe Balard; Ray Bell; David W. Burt; Sandy Denney; Philippe Feautrier; Thierry Fusco; Jean-Luc Gach; José Javier Diaz Garcia; Christian Guillaume; Norbert Hubin; Paul Jorden; Markus Kasper; Manfred Meyer; Peter J. Pool; Javier Reyes; Michael Skegg; Eric Stadler; Wolfgang Suske; Patrick Wheeler

ESO and JRA2 OPTICON have funded e2v technologies to develop a compact packaged Peltier cooled 24 μm square 240x240 pixels split frame transfer 8-output back-illuminated L3Vision CCD3, L3Vision CCD for Adaptive Optic Wave Front Sensor (AO WFS) applications. The device is designed to achieve sub-electron read noise at frame rates from 25 Hz to 1,500 Hz and dark current lower than 0.01 e-/pixel/frame. The development has many unique features. To obtain high frame rates, multi-output EMCCD gain registers and metal buttressing of row clock lines are used. The baseline device is built in standard silicon. In addition, a split wafer run has enabled two speculative variants to be built; deep depletion silicon devices to improve red response and devices with an electronic shutter to extend use to Rayleigh and Pulsed Laser Guide Star applications. These are all firsts for L3Vision CCDs. The designs of the CCD and Peltier package have passed their reviews and fabrication has begun. This paper will describe the progress to date, the requirements and the design of the CCD and compact Peltier package, technology trade-offs, schedule and proposed test plan. High readout speed, low noise and compactness (requirement to fit in confined spaces) provide special challenges to ESOs AO variant of its NGC, New General detector Controller to drive this CCD. This paper will describe progress made on the design of the controller to meet these special needs.

Collaboration


Dive into the Eric Stadler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Norbert Hubin

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Julien Charton

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Y. Magnard

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean-Luc Gach

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

A. Delboulbé

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

David Mouillet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Patrick Rabou

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Mark Downing

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge