Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Y. Magnard is active.

Publication


Featured researches published by Y. Magnard.


Astronomy and Astrophysics | 2011

PIONIER: a 4-telescope visitor instrument at VLTI

J.-B. Le Bouquin; J. Berger; B. Lazareff; G. Zins; P. Haguenauer; L. Jocou; P. Kern; R. Millan-Gabet; Wesley A. Traub; Olivier Absil; J.-C. Augereau; M. Benisty; N. Blind; Xavier Bonfils; Pierre Bourget; A. Delboulbé; Philippe Feautrier; M. Germain; Philippe B. Gitton; D. Gillier; M. Kiekebusch; J. Kluska; Jens Knudstrup; Pierre Labeye; J.-L. Lizon; Jean-Louis Monin; Y. Magnard; F. Malbet; D. Maurel; Francois Menard

PIONIER stands for Precision Integrated-Optics Near-infrared Imaging ExpeRiment. It combines four 1.8m Auxilliary Telescopes or four 8m Unit Telescopes of the Very Large Telescope Interferometer (ESO, Chile) using an integrated optics combiner. The instrument has been integrated at IPAG starting in December 2009 and commissioned at the Paranal Observatory in October 2010. It provides scientific observations since November 2010. In this paper, we detail the instrumental concept, we describe the standard operational modes and the data reduction strategy. We present the typical performance and discuss how to improve them. This paper is based on laboratory data obtained during the integrations at IPAG, as well as on-sky data gathered during the commissioning at VLTI. We illustrate the imaging capability of PIONIER on the binaries deltaSco and HIP11231. PIONIER provides 6 visibilities and 3 independent closure phases in the H band, either in a broadband mode or with a low spectral dispersion (R=40), using natural light (i.e. unpolarized). The limiting magnitude is Hmag=7 in dispersed mode under median atmospheric conditions (seeing 3ms) with the 1.8m Auxiliary Telescopes. We demonstrate a precision of 0.5deg on the closure phases. The precision on the calibrated visibilities ranges from 3 to 15% depending on the atmospheric conditions. PIONIER has been installed and successfully tested as a visitor instrument for the VLTI. It permits high angular resolution imaging studies at an unprecedented level of sensitivity. The successful combination of the four 8m Unit Telescopes in March 2011 demonstrates that VLTI is ready for 4-telescope operation.


Astronomy and Astrophysics | 2016

First light of the VLT planet finder SPHERE III. New spectrophotometry and astrometry of the HR 8799 exoplanetary system

A. Zurlo; A. Vigan; R. Galicher; A.-L. Maire; D. Mesa; R. Gratton; G. Chauvin; M. Kasper; Claire Moutou; M. Bonnefoy; S. Desidera; Lyu Abe; Daniel Apai; Andrea Baruffolo; Pierre Baudoz; J. Baudrand; J.-L. Beuzit; P. Blancard; A. Boccaletti; F. Cantalloube; M. Carle; E. Cascone; Julien Charton; R. U. Claudi; A. Costille; V. De Caprio; Kjetil Dohlen; C. Dominik; D. Fantinel; Philippe Feautrier

Context. The planetary system discovered around the young A-type HR 8799 provides a unique laboratory to: a) test planet formation theories; b) probe the diversity of system architectures at these separations, and c) perform comparative (exo)planetology. Aims. We present and exploit new near-infrared images and integral-field spectra of the four gas giants surrounding HR 8799 obtained with SPHERE, the new planet finder instrument at the Very Large Telescope, during the commissioning and science verification phase of the instrument (July–December 2014). With these new data, we contribute to completing the spectral energy distribution (SED) of these bodies in the 1.0–2.5 μm range. We also provide new astrometric data, in particular for planet e, to further constrain the orbits. Methods. We used the infrared dual-band imager and spectrograph (IRDIS) subsystem to obtain pupil-stabilized, dual-band H2H3 (1.593 μm, 1.667 μm), K1K2 (2.110 μm, 2.251 μm), and broadband J (1.245 μm) images of the four planets. IRDIS was operated in parallel with the integral field spectrograph (IFS) of SPHERE to collect low-resolution (R ~ 30), near-infrared (0.94–1.64 μm) spectra of the two innermost planets HR 8799 d and e. The data were reduced with dedicated algorithms, such as the Karhunen-Loeve image projection (KLIP), to reveal the planets. We used the so-called negative planets injection technique to extract their photometry, spectra, and measure their positions. We illustrate the astrometric performance of SPHERE through sample orbital fits compatible with SPHERE and literature data. Results. We demonstrated the ability of SPHERE to detect and characterize planets in this kind of systems, providing spectra and photometry of its components. The spectra improve upon the signal-to-noise ratio of previously obtained data and increase the spectral coverage down to the Y band. In addition, we provide the first detection of planet e in the J band. Astrometric positions for planets HR 8799 bcde are reported for the epochs of July, August, and December 2014. We measured the photometric values in J, H2H3, K1K2 bands for the four planets with a mean accuracy of 0.13 mag. We found upper limit constraints on the mass of a possible planet f of 3–7 MJup . Our new measurements are more consistent with the two inner planets d and e being in a 2d:1e or 3d:2e resonance. The spectra of HR 8799 d and e are well matched by those of L6-8 field dwarfs. However, the SEDs of these objects are redder than field L dwarfs longward of 1.6 μm.


Astronomy and Astrophysics | 2016

First light of the VLT planet finder SPHERE IV : Physical and chemical properties of the planets around HR8799

M. Bonnefoy; A. Zurlo; J.-L. Baudino; Philip W. Lucas; D. Mesa; A. L. Maire; A. Vigan; R. Galicher; D. Homeier; F. Marocco; R. Gratton; G. Chauvin; F. Allard; S. Desidera; M. Kasper; Claire Moutou; A.-M. Lagrange; J. Antichi; Andrea Baruffolo; J. Baudrand; J.-L. Beuzit; A. Boccaletti; F. Cantalloube; M. Carbillet; Julien Charton; R. U. Claudi; A. Costille; Kjetil Dohlen; C. Dominik; D. Fantinel

Context. The system of fourplanets discovered around the intermediate-mass star HR8799 offers a unique opportunity to test planet formation theories at large orbital radii and to probe the physics and chemistry at play in the atmospheres of self-luminous young (~30 Myr) planets. We recently obtained new photometry of the four planets and low-resolution (R ~ 30) spectra of HR8799 d and e with the SPHERE instrument (Paper III). Aims. In this paper (Paper IV), we aim to use these spectra and available photometry to determine how they compare to known objects, what the planet physical properties are, and how their atmospheres work. Methods. We compare the available spectra, photometry, and spectral energy distribution (SED) of the planets to field dwarfs and young companions. In addition, we use the extinction from corundum, silicate (enstatite and forsterite), or iron grains likely to form in the atmosphere of the planets to try to better understand empirically the peculiarity of their spectrophotometric properties. To conclude, we use three sets of atmospheric models (BT-SETTL14, Cloud-AE60, Exo-REM) to determine which ingredients are critically needed in the models to represent the SED of the objects, and to constrain their atmospheric parameters (T_(eff), log g, M/H). Results. We find that HR8799d and e properties are well reproduced by those of L6-L8 dusty dwarfs discovered in the field, among which some are candidate members of young nearby associations. No known object reproduces well the properties of planets b and c. Nevertheless, we find that the spectra and WISE photometry of peculiar and/or young early-T dwarfs reddened by submicron grains made of corundum, iron, enstatite, or forsterite successfully reproduce the SED of these planets. Our analysis confirms that only the Exo-REM models with thick clouds fit (within 2σ) the whole set of spectrophotometric datapoints available for HR8799 d and e for T_(eff) = 1200 K, log g in the range 3.0−4.5, and M/H = +0.5. The models still fail to reproduce the SED of HR8799c and b. The determination of the metallicity, log g, and cloud thickness are degenerate. Conclusions. Our empirical analysis and atmospheric modelling show that an enhanced content in dust and decreased CIA of H_2 is certainly responsible for the deviation of the properties of the planet with respect to field dwarfs. The analysis suggests in addition that HR8799c and b have later spectral types than the two other planets, and therefore could both have lower masses.


Proceedings of SPIE | 2010

PIONIER: a visitor instrument for VLTI

Jean-Philippe Berger; G. Zins; B. Lazareff; J. B. Lebouquin; L. Jocou; P. Kern; R. Millan-Gabet; Wesley A. Traub; P. Haguenauer; Olivier Absil; J.-C. Augereau; M. Benisty; N. Blind; Xavier Bonfils; A. Delboulbé; Philippe Feautrier; M. Germain; D. Gillier; Philippe B. Gitton; M. Kiekebusch; Jens Knudstrup; J.-L. Lizon; Y. Magnard; Fabien Malbet; D. Maurel; Francois Menard; M. Micallef; L. Michaud; S. Morel; T. Moulin

PIONIER is a 4-telescope visitor instrument for the VLTI, planned to see its first fringes in 2010. It combines four ATs or four UTs using a pairwise ABCD integrated optics combiner that can also be used in scanning mode. It provides low spectral resolution in H and K band. PIONIER is designed for imaging with a specific emphasis on fast fringe recording to allow closure-phases and visibilities to be precisely measured. In this work we provide the detailed description of the instrument and present its updated status.


Astronomical Telescopes and Instrumentation | 2000

NAOS visible wavefront sensor

Philippe Feautrier; P. Kern; Reinhold J. Dorn; Gerard Rousset; Patrick Rabou; Sylvain Laurent; J.-L. Lizon; Eric Stadler; Y. Magnard; Olivier Rondeaux; Matthieu Cochard; Didier Rabaud; A. Delboulbé; Pascal Puget; Norbert Hubin

This paper describes the Visible Wave Front Sensor (visible WFS) for the VLT Nasmith Adaptive Optics system (NAOS). This Shack-Hartman-based wave front sensor instrument includes within a continuous flow liquid nitrogen cryostat: (1) a low noise fast readout CCD camera controlled by the ESO new generation CCD controller FIERA. The readout noise of this system is 3 e- at 50 kilopixel/sec/port, and is only limited by the CCD intrinsic noise. FIERA proposes remotely controlled readout modes with optional binning, windowing and flexible integration time. (2) two remotely exchangeable micro-lens arrays focusing the analyzed wave front directly on the CCD sensitive surface. The wave front sensor includes also its own atmospheric dispersion compensator. Due to the continuous rotation of the NAOS adapter, the mechanical stiffness of the visible wave front sensor must be very high not to disturb the loop operation (no more than 0.1 micrometer of lenslet array displacement compared to the CCD location over a 30 degree rotation angle of the instrument). The following simulations and tests are described: (1) simulation results providing an estimation of the NAOS maximum operating magnitude, (2) camera optimization, (3) mechanical stiffness measurements.


Proceedings of SPIE | 2012

PIONIER: a status report

J.-B. Le Bouquin; J. Berger; G. Zins; B. Lazareff; L. Jocou; P. Kern; R. Millan-Gabet; Wesley A. Traub; P. Haguenauer; Olivier Absil; J.-C. Augereau; M. Benisty; N. Blind; A. Delboulbé; Philippe Feautrier; M. Germain; D. Gillier; Philippe B. Gitton; M. Kiekebusch; Jens Knudstrup; J.-L. Lizon; Y. Magnard; Fabien Malbet; D. Maurel; Francois Menard; M. Micallef; L. Michaud; T. Moulin; Dan Popovic; K. Perraut

The visitor instrument PIONIER provides VLTI with improved imaging capabilities and sensitivity. The in- strument started routinely delivering scientic data in November 2010, that is less than 12 months after being approved by the ESO Science and Technical Committee. We recall the challenges that had to be tackled to design, built and commission PIONIER. We summarize the typical performances and some astrophysical results obtained so far. We conclude this paper by summarizing lessons learned.


Proceedings of SPIE | 2010

Characterization of OCam and CCD220, the fastest and most sensitive camera to date for AO wavefront sensing

Philippe Feautrier; Jean-Luc Gach; Philippe Balard; Christian Guillaume; Mark Downing; Norbert Hubin; Eric Stadler; Y. Magnard; Michael Skegg; Mark P. Robbins; Sandy Denney; Wolfgang Suske; Paul Jorden; Patrick Wheeler; Peter J. Pool; Ray Bell; David W. Burt; Ian R. L. Davies; Javier Reyes; Manfred Meyer; Dietrich Baade; Markus Kasper; Robin Arsenault; Thierry Fusco; Jose J. Diaz-Garcia

For the first time, sub-electron read noise has been achieved with a camera suitable for astronomical wavefront-sensing (WFS) applications. The OCam system has demonstrated this performance at 1300 Hz frame rate and with 240×240-pixel frame rate. ESO and JRA2 OPTICON2 have jointly funded e2v technologies to develop a custom CCD for Adaptive Optics (AO) wavefront sensing applications. The device, called CCD220, is a compact Peltier-cooled 240×240 pixel frame-transfer 8-output back-illuminated sensor using the EMCCD technology. This paper demonstrates sub-electron read noise at frame rates from 25 Hz to 1300 Hz and dark current lower than 0.01 e-/pixel/frame. It reports on the comprehensive, quantitative performance characterization of OCam and the CCD220 such as readout noise, dark current, multiplication gain, quantum efficiency, charge transfer efficiency... OCam includes a low noise preamplifier stage, a digital board to generate the clocks and a microcontroller. The data acquisition system includes a user friendly timer file editor to generate any type of clocking scheme. A second version of OCam, called OCam2, was designed offering enhanced performances, a completely sealed camera package and an additional Peltier stage to facilitate operation on a telescope or environmentally rugged applications. OCam2 offers two types of built-in data link to the Real Time Computer: the CameraLink industry standard interface and various fiber link options like the sFPDP interface. OCam2 includes also a modified mechanical design to ease the integration of microlens arrays for use of this camera in all types of wavefront sensing AO system. The front cover of OCam2 can be customized to include a microlens exchange mechanism.


Proceedings of SPIE | 2014

The beam combiners of Gravity VLTI instrument: concept, development, and performance in laboratory

L. Jocou; K. Perraut; T. Moulin; Y. Magnard; Pierre Labeye; V. Lapras; A. Nolot; G. Perrin; F. Eisenhauer; Christopher Holmes; A. Amorim; Wolfgang Brandner; C. Straubmeier

Gravity is one of the second-generation instruments of the Very Large Telescope Interferometer that operates in the near infrared range and that is designed for precision narrow-angle astrometry and interferometric imaging. With its infrared wavefront sensors, pupil stabilization, fringe tracker, and metrology, the instrument is tailored to provide a high sensitivity, imaging with 4-millisecond resolution, and astrometry with a 10μarcsec precision. It will probe physics close to the event horizon of the Galactic Centre black hole, and allow to study mass accretion and jets in young stellar objects and active galactic nuclei, planet formation in circumstellar discs, or detect and measure the masses of black holes in massive star clusters throughout the Milky Way. As the instrument required an outstanding level of precision and stability, integrated optics has been chosen to collect and combine the four VLTI beams in the K band. A dedicated integrated optics chip glued to a fiber array has been developed. Technology breakthroughs have been mandatory to fulfill all the specifications. This paper is focused on the interferometric beam combination system of Gravity. Once the combiner concept described, the paper details the developments that have been led, the integration and the performance of the assemblies.


Proceedings of SPIE | 2012

The integrated optics beam combiner assembly of the GRAVITY/VLTI instrument

L. Jocou; K. Perraut; A. Nolot; T. Moulin; Y. Magnard; Pierre Labeye; V. Lapras; F. Eisenhauer; G. Perrin; A. Amorim; Wolfgang Brandner; C. Straubmeier

Gravity aims at enhancing infrared imaging at VLTI to significantly improve our understanding of the physical processes related to gravitation and accretion within compact objects. With its fiber-fed integrated optics, infrared wavefront sensors, fringe tracker, beam stabilization and a novel metrology concept, GRAVITY will push the sensitivity and accuracy of astrometry and interferometric imaging far beyond what is offered today. Four telescopes will be combined in dual feed in the K band providing precision astrometry of order 10 micro-arcseconds, and imaging with 4- milliarcsecond resolution. The fringe tracker and the scientific instrument host an identical integrated optics beam combiner made by silica-on-silicon etching technology that is put inside a cryogenic vessel and cooled down to 200K to reduce thermal background and increase sensitivity. This paper gives the design of the integrated beam combiner and of its fibered array that allows feeding the combiner with stellar light. Lab measurement of spectral throughput and interferometric performance for beam combiners made by Flame Hydrolysis Deposition and by Plasma-Enhanced Chemical Vapor Deposition (PECVD) are given. The procedure to glue together the beam combiner and its fibered array is described as well as the tests to validate the performance and the ageing effects at low temperature. Finally the thermal analysis and the eigen-frequency study of the whole device are presented.


Proceedings of SPIE | 2015

ExTrA: Exoplanets in transit and their atmospheres

Xavier Bonfils; J. M. Almenara; L. Jocou; A. Wunsche; P. Kern; A. Delboulbé; X. Delfosse; Philippe Feautrier; T. Forveille; L. Gluck; S. Lafrasse; Y. Magnard; D. Maurel; T. Moulin; F. Murgas; Patrick Rabou; S. Rochat; A. Roux; Eric Stadler

The ExTrA facility, located at La Silla observatory, will consist of a near-infrared multi-object spectrograph fed by three 60-cm telescopes. ExTrA will add the spectroscopic resolution to the traditional differential photometry method. This shall enable the fine correction of color-dependent systematics that would otherwise hinder ground-based observations. With both this novel method and an infrared-enabled efficiency, ExTrA aims to find transiting telluric planets orbiting in the habitable zone of bright nearby M dwarfs. It shall have the versatility to do so by running its own independent survey and also by concurrently following-up on the space candidates unveiled by K2 and TESS. The exoplanets detected by ExTrA will be amenable to atmospheric characterisation with VLTs, JWST, and ELTs and could give our first peek into an exo-life laboratory.

Collaboration


Dive into the Y. Magnard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Delboulbé

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Eric Stadler

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

L. Jocou

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Patrick Rabou

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

P. Kern

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Norbert Hubin

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

M. Bonnefoy

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

T. Moulin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

A. Vigan

Aix-Marseille University

View shared research outputs
Researchain Logo
Decentralizing Knowledge