Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric T. Kool is active.

Publication


Featured researches published by Eric T. Kool.


Angewandte Chemie | 2000

Mimicking the Structure and Function of DNA: Insights into DNA Stability and Replication

Eric T. Kool; Juan C. Morales; Kevin M. Guckian

The physical and chemical factors that allow DNA to perform its functions in the cell have been studied for several decades. Recent advances in the synthesis and manipulation of DNA have allowed this field to move ahead especially rapidly during the past fifteen years. One of the most common chemical approaches to the study of interactions involving DNA has been the use of DNA base analogues in which functional groups are added, deleted, blocked, or rearranged. Here we describe a different strategy, in which the polar natural DNA bases are replaced by nonpolar aromatic molecules of the same size and shape. This allows the evaluation of polar interactions (such as hydrogen bonding) with little or no interference from steric effects. We have used these nonpolar nucleoside isosteres as probes of noncovalent interactions such as DNA base pairing and protein - DNA recognition. We have found that, while base-pairing selectivity does depend on Watson - Crick hydrogen bonding in the natural pairs, it is possible to design new bases that pair selectively and stably in the absence of hydrogen bonds. In addition, studies have been carried out with DNA polymerase enzymes to investigate the importance of Watson - Crick hydrogen bonding in enzymatic DNA replication. Surprisingly, this hydrogen bonding is not necessary for efficient enzymatic synthesis of a base pair, and significant levels of selectivity can arise from steric effects alone. These results may have significant impact both on the study of basic biomolecular interactions and in the design of new, functionally active biomolecules.


Nature | 2015

Structural imprints in vivo decode RNA regulatory mechanisms

Robert C. Spitale; Ryan A. Flynn; Qiangfeng Cliff Zhang; Pete Crisalli; Byron K. Lee; Jong-Wha Jung; Hannes Y. Kuchelmeister; Pedro J. Batista; Eduardo A. Torre; Eric T. Kool; Howard Y. Chang

Visualizing the physical basis for molecular behaviour inside living cells is a great challenge for biology. RNAs are central to biological regulation, and the ability of RNA to adopt specific structures intimately controls every step of the gene expression program. However, our understanding of physiological RNA structures is limited; current in vivo RNA structure profiles include only two of the four nucleotides that make up RNA. Here we present a novel biochemical approach, in vivo click selective 2′-hydroxyl acylation and profiling experiment (icSHAPE), which enables the first global view, to our knowledge, of RNA secondary structures in living cells for all four bases. icSHAPE of the mouse embryonic stem cell transcriptome versus purified RNA folded in vitro shows that the structural dynamics of RNA in the cellular environment distinguish different classes of RNAs and regulatory elements. Structural signatures at translational start sites and ribosome pause sites are conserved from in vitro conditions, suggesting that these RNA elements are programmed by sequence. In contrast, focal structural rearrangements in vivo reveal precise interfaces of RNA with RNA-binding proteins or RNA-modification sites that are consistent with atomic-resolution structural data. Such dynamic structural footprints enable accurate prediction of RNA–protein interactions and N6-methyladenosine (m6A) modification genome wide. These results open the door for structural genomics of RNA in living cells and reveal key physiological structures controlling gene expression.


Nature Structural & Molecular Biology | 1998

Efficient replication between non-hydrogen-bonded nucleoside shape analogs

Juan C. Morales; Eric T. Kool

DNA polymerase enzymes make an error only once per 104–10 5 initial nucleotide insertions during DNA replication. Most currently held models of this high fidelity cite the hydrogen bonds between complementary pyrimidines and purines as a critical controlling factor. Testing this has been difficult, however, since standard molecular strategies for blocking or removing polar hydrogen-bonding groups cause changes to size and shape as well as hydrogen bonding ability. One answer to this problem is the use of nonpolar molecules that mimic the shape of natural DNA bases. Here we show that a non-hydrogen-bonding shape mimic for adenine is replicated efficiently and selectively against a nonpolar shape mimic for thymine. The results establish that hydrogen bonds in a base pair are not absolutely required for efficient nucleotide insertion. This adds support to the idea that shape complementarity may play as important a role in replication as base–base hydrogen bonds.


Nature | 1999

A specific partner for abasic damage in DNA

Tracy J. Matray; Eric T. Kool

In most models of DNA replication, Watson–Crick hydrogen bonding drives the incorporation of nucleotides into the new strand of DNA and maintains the complementarity of bases with the template strand. Studies with nonpolar analogues of thymine and adenine, however, have shown that replication is still efficient in the absence of hydrogen bonds. The replication of base pairs might also be influenced by steric exclusion, whereby inserted nucleotides need to be the correct size and shape to fit the active site against a template base,. A simple steric-exclusion model may not require Watson–Crick hydrogen bonding to explain the fidelity of replication, nor should canonical purine and pyrimidine shapes be necessary for enzymatic synthesis of a base pair if each can fit into the DNA double helix without steric strain. Here we test this idea by using a pyrene nucleoside triphosphate (dPTP) in which the fluorescent ‘base’ is nearly as large as an entire Watson–Crick base pair. We show that the non-hydrogen-bonding dPTP is efficiently and specifically inserted by DNA polymerases opposite sites that lack DNA bases. The efficiency of this process approaches that of a natural base pair and the specificity is 102–104-fold. We use these properties to sequence abasic lesions in DNA, which are a common form of DNA damage in vivo. In addition to their application in identifying such genetic lesions, our results show that neither hydrogen bonds nor purine and pyrimidine structures are required to form a base pair with high efficiency and selectivity. These findings confirm that steric complementarity is an important factor in the fidelity of DNA synthesis.


Nature Biotechnology | 2001

Nonenzymatic autoligation in direct three-color detection of RNA and DNA point mutations

Yanzheng Xu; Nilesh B. Karalkar; Eric T. Kool

Enzymatic ligation methods are useful in diagnostic detection of DNA sequences. Here we describe the investigation of nonenzymatic phosphorothioate–iodide DNA autoligation chemistry as a method for detection and identification of both RNA and DNA sequences. Combining ligation specificity with the hybridization specificity of the ligated product is shown to yield discrimination of a point mutation as high as >104-fold. Unlike enzymatic ligations, this reaction is found to be equally efficient on RNA or DNA templates. The reaction is also shown to exhibit a significant level of self-amplification, with the template acting in catalytic fashion to ligate multiple pairs of probes. A strategy for fluorescence labeling of three autoligating energy transfer (ALET) probes and directly competing them for autoligation on a target sequence is described. The method is tested in several formats, including solution phase, gel, and blot assays. The ALET probe design offers direct RNA detection, combining high sequence specificity with an easily detectable color change by fluorescence resonance energy transfer (FRET).


Journal of the American Chemical Society | 2015

Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification.

Caroline Roost; Stephen R. Lynch; Pedro J. Batista; Kun Qu; Howard Y. Chang; Eric T. Kool

N(6)-Methyladenosine (m(6)A) modification is hypothesized to control processes such as RNA degradation, localization, and splicing. However, the molecular mechanisms by which this occurs are unclear. Here, we measured structures of an RNA duplex containing m(6)A in the GGACU consensus, along with an unmodified RNA control, by 2D NMR. The data show that m(6)A-U pairing in the double-stranded context is accompanied by the methylamino group rotating from its energetically preferred syn geometry on the Watson-Crick face to the higher-energy anti conformation, positioning the methyl group in the major groove. Thermodynamic measurements of m(6)A in duplexes reveal that it is destabilizing by 0.5-1.7 kcal/mol. In contrast, we show that m(6)A in unpaired positions base stacks considerably more strongly than the unmodified base, adding substantial stabilization in single-stranded locations. Transcriptome-wide nuclease mapping of methylated RNA secondary structure from human cells reveals a structural transition at methylated adenosines, with a tendency to single-stranded structure adjacent to the modified base.


Nature Structural & Molecular Biology | 1998

Solution structure of a DNA duplex containing a replicable difluorotoluene-adenine pair.

Kevin M. Guckian; Thomas R. Krugh; Eric T. Kool

A nonpolar aromatic nucleoside derivative based on 2,4-difluorotoluene (F), a non-hydrogen bonding shape analog of thymidine, was recently shown to be replicated against adenine with high efficiency and fidelity. This led to the suggestion that geometric matching, potentially even in the absence of hydrogen bonding between bases in a pair, may be sufficient to direct nucleotide selection during replication. We have examined the solution structure of the F–A pair in the context of a 12 base pair DNA duplex. We find that, despite the destabilization caused by this analog, the F–A pair very closely resembles that of a T·A pair in the same context. This lends support to the importance of shape matching in replication.


Journal of the American Chemical Society | 2011

Differentiating between Fluorescence-Quenching Metal Ions with Polyfluorophore Sensors Built on a DNA Backbone

Samuel S. Tan; Su Jeong Kim; Eric T. Kool

A common problem in detecting metal ions with fluorescentchemosensors is the emission-suppressing effects of fluorescence-quenching metal ions. This quenching tendency makes it difficult to design sensors with turn-on signal, and differentiate between several metal ions that may yield a strong quenching response. To address these challenges, we investigate a new sensor design strategy, incorporating fluorophores and metal ligands as DNA base replacements in DNA-like oligomers, for generating a broader range of responses for quenching metal ions. The modular molecular design enabled rapid synthesis and discovery of sensors from libraries on PEG-polystyrene beads. Using this approach, water-soluble sensors 1-5 were identified as strong responders to a set of eight typically quenching metal ions (Co(2+), Ni(2+), Cu(2+), Hg(2+), Pb(2+), Ag(+), Cr(3+), and Fe(3+)). They were synthesized and characterized for sensing responses in solution. Cross-screening with the full set of metal ions showed that they have a wide variety of responses, including emission enhancements and red- and blue-shifts. The diversity of sensor responses allows as few as two sensors (1 and 2) to be used together to successfully differentiate these eight metals. As a test, a set of unknown metal ion solutions in blind studies were also successfully identified based on the response pattern of the sensors. The modular nature of the sensor design strategy suggests a broadly applicable approach to finding sensors for differentiating many different cations by pattern-based recognition, simply by varying the sequence and composition of ligands and fluorophores on a DNA synthesizer.


Journal of Organic Chemistry | 2013

Water-soluble organocatalysts for hydrazone and oxime formation.

Pete Crisalli; Eric T. Kool

The formation of oximes and hydrazones is widely used in chemistry and biology as a molecular conjugation strategy for achieving ligation, attachment, and bioconjugation. However, the relatively slow rate of reaction has hindered its utility. Here, we report that simple, commercially available anthranilic acids and aminobenzoic acids act as superior catalysts for hydrazone and oxime formation, speeding the reaction considerably over the traditional aniline-catalyzed reaction at neutral pH. This efficient nucleophilic catalysis, involving catalyst-imine intermediates, allows rapid hydrazone/oxime formation even with relatively low concentrations of the two reactants. The most efficient catalysts are found to be 5-methoxyanthranilic acid and 3,5-diaminobenzoic acid; we find that they can enhance rates by factors of as much as 1-2 orders of magnitude over the aniline-catalyzed reaction. Evidence based on a range of differently substituted arylamines suggests that the ortho-carboxylate group in the anthranilate catalysts serves to aid in intramolecular proton transfer during imine and hydrazone formation.


Biopolymers | 1998

Replication of non-hydrogen bonded bases by DNA polymerases: A mechanism for steric matching

Eric T. Kool

Recent experiments have presented evidence that Watson–Crick hydrogen bonds in a base pair are not absolute requirements for efficient synthesis of that pair by DNA polymerase enzymes. Here we examine quantitative steady‐state kinetic data from several published studies involving poorly hydrogen‐bonding DNA base analogues and adducts, and analyze the results in terms of solvation, hydrogen bonding, and steric effects. We propose a mechanism that can explain the surprising lack of hydrogen‐bonding requirement accompanied by significant selectivity in pairing. This hypothesis makes use of steric matching, enforced both by the tightly confined polymerase active site and by the DNA backbone, as a chief factor determining nucleotide selection during DNA synthesis. The results also suggest that hydrogen bonds from bases to water (solvation) may be important in increasing the effective size of DNA bases, which may help prevent misinsertion of small bases opposite each other.

Collaboration


Dive into the Eric T. Kool's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan C. Morales

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge