Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric W. Wolff is active.

Publication


Featured researches published by Eric W. Wolff.


Nature | 2004

Eight glacial cycles from an Antarctic ice core

Laurent Augustin; Carlo Barbante; Piers R F Barnes; Jean Marc Barnola; Matthias Bigler; E. Castellano; Olivier Cattani; J. Chappellaz; Dorthe Dahl-Jensen; Barbara Delmonte; Gabrielle Dreyfus; Gaël Durand; S. Falourd; Hubertus Fischer; Jacqueline Flückiger; M. Hansson; Philippe Huybrechts; Gérard Jugie; Sigfus J Johnsen; Jean Jouzel; Patrik R Kaufmann; Josef Kipfstuhl; Fabrice Lambert; Vladimir Ya. Lipenkov; Geneviève C Littot; Antonio Longinelli; Reginald Lorrain; Valter Maggi; Valérie Masson-Delmotte; Heinz Miller

The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not possible to infer the abundance of greenhouse gases in the atmosphere from marine records. Here we report the recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years. For the four most recent glacial cycles, the data agree well with the record from Vostok. The earlier period, between 740,000 and 430,000 years ago, was characterized by less pronounced warmth in interglacial periods in Antarctica, but a higher proportion of each cycle was spent in the warm mode. The transition from glacial to interglacial conditions about 430,000 years ago (Termination V) resembles the transition into the present interglacial period in terms of the magnitude of change in temperatures and greenhouse gases, but there are significant differences in the patterns of change. The interglacial stage following Termination V was exceptionally long—28,000 years compared to, for example, the 12,000 years recorded so far in the present interglacial period. Given the similarities between this earlier warm period and today, our results may imply that without human intervention, a climate similar to the present one would extend well into the future.The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not possible to infer the abundance of greenhouse gases in the atmosphere from marine records. Here we report the recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years. For the four most recent glacial cycles, the data agree well with the record from Vostok. The earlier period, between 740,000 and 430,000 years ago, was characterized by less pronounced warmth in interglacial periods in Antarctica, but a higher proportion of each cycle was spent in the warm mode. The transition from glacial to interglacial conditions about 430,000 years ago (Termination V) resembles the transition into the present interglacial period in terms of the magnitude of change in temperatures and greenhouse gases, but there are significant differences in the patterns of change. The interglacial stage following Termination V was exceptionally long—28,000 years compared to, for example, the 12,000 years recorded so far in the present interglacial period. Given the similarities between this earlier warm period and today, our results may imply that without human intervention, a climate similar to the present one would extend well into the future.


Nature | 2006

One-to-one coupling of glacial climate variability in Greenland and Antarctica.

Carlo Barbante; Jean-Marc Barnola; Silvia Becagli; J. Beer; Matthias Bigler; Claude F. Boutron; Thomas Blunier; E. Castellano; Olivier Cattani; J. Chappellaz; Dorthe Dahl-Jensen; Maxime Debret; Barbara Delmonte; Dorothee Dick; S. Falourd; S. H. Faria; Urs Federer; Hubertus Fischer; Johannes Freitag; Andreas Frenzel; Diedrich Fritzsche; Felix Fundel; Paolo Gabrielli; Vania Gaspari; Rainer Gersonde; Wolfgang Graf; D. Grigoriev; Ilka Hamann; M. Hansson; George R. Hoffmann

Precise knowledge of the phase relationship between climate changes in the two hemispheres is a key for understanding the Earth’s climate dynamics. For the last glacial period, ice core studies have revealed strong coupling of the largest millennial-scale warm events in Antarctica with the longest Dansgaard–Oeschger events in Greenland through the Atlantic meridional overturning circulation. It has been unclear, however, whether the shorter Dansgaard–Oeschger events have counterparts in the shorter and less prominent Antarctic temperature variations, and whether these events are linked by the same mechanism. Here we present a glacial climate record derived from an ice core from Dronning Maud Land, Antarctica, which represents South Atlantic climate at a resolution comparable with the Greenland ice core records. After methane synchronization with an ice core from North Greenland, the oxygen isotope record from the Dronning Maud Land ice core shows a one-to-one coupling between all Antarctic warm events and Greenland Dansgaard–Oeschger events by the bipolar seesaw6. The amplitude of the Antarctic warm events is found to be linearly dependent on the duration of the concurrent stadial in the North, suggesting that they all result from a similar reduction in the meridional overturning circulation.


Nature | 2006

Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles

Eric W. Wolff; Hubertus Fischer; Felix Fundel; Urs Ruth; B. Twarloh; Geneviève C Littot; Robert Mulvaney; Regine Röthlisberger; M. de Angelis; C.F. Boutron; M. Hansson; Ulf Jonsell; Manuel A. Hutterli; Fabrice Lambert; Patrik R Kaufmann; Bernhard Stauffer; Thomas F. Stocker; Jørgen Peder Steffensen; Matthias Bigler; M.L. Siggaard-Andersen; Roberto Udisti; Silvia Becagli; E. Castellano; Mirko Severi; Dietmar Wagenbach; Carlo Barbante; Paolo Gabrielli; V. Gaspari

Sea ice and dust flux increased greatly in the Southern Ocean during the last glacial period. Palaeorecords provide contradictory evidence about marine productivity in this region, but beyond one glacial cycle, data were sparse. Here we present continuous chemical proxy data spanning the last eight glacial cycles (740,000 years) from the Dome C Antarctic ice core. These data constrain winter sea-ice extent in the Indian Ocean, Southern Ocean biogenic productivity and Patagonian climatic conditions. We found that maximum sea-ice extent is closely tied to Antarctic temperature on multi-millennial timescales, but less so on shorter timescales. Biological dimethylsulphide emissions south of the polar front seem to have changed little with climate, suggesting that sulphur compounds were not active in climate regulation. We observe large glacial–interglacial contrasts in iron deposition, which we infer reflects strongly changing Patagonian conditions. During glacial terminations, changes in Patagonia apparently preceded sea-ice reduction, indicating that multiple mechanisms may be responsible for different phases of CO2 increase during glacial terminations. We observe no changes in internal climatic feedbacks that could have caused the change in amplitude of Antarctic temperature variations observed 440,000 years ago.Sea ice and dust flux increased greatly in the Southern Ocean during the last glacial period. Palaeorecords provide contradictory evidence about marine productivity in this region, but beyond one glacial cycle, data were sparse. Here we present continuous chemical proxy data spanning the last eight glacial cycles (740,000 years) from the Dome C Antarctic ice core. These data constrain winter sea-ice extent in the Indian Ocean, Southern Ocean biogenic productivity and Patagonian climatic conditions. We found that maximum sea-ice extent is closely tied to Antarctic temperature on multi-millennial timescales, but less so on shorter timescales. Biological dimethylsulphide emissions south of the polar front seem to have changed little with climate, suggesting that sulphur compounds were not active in climate regulation. We observe large glacial–interglacial contrasts in iron deposition, which we infer reflects strongly changing Patagonian conditions. During glacial terminations, changes in Patagonia apparently preceded sea-ice reduction, indicating that multiple mechanisms may be responsible for different phases of CO2 increase during glacial terminations. We observe no changes in internal climatic feedbacks that could have caused the change in amplitude of Antarctic temperature variations observed 440,000 years ago.Its a long story...At over 3 km long, the ice core drilled at Dome C in Antarctica represents a record of 740,000 years, or eight glacial cycles. This will be the longest climate record available for years to come, so information gleaned from it will become a benchmark for Antarctic climate research. An examination of the core shows that sea ice around Antarctica waxed and waned in line with temperature over multimillennial timescales, but less so over shorter periods. During cold periods, larger amounts of dust were produced from a drier Patagonia, landing in the Southern Ocean where they probably affected marine productivity. Oceanic production of sulphur compounds, which might affect cloud nucleation, was remarkably constant throughout the period.Data from the Southern Ocean sea-ice extent, the biological productivity of the ocean, and atmospheric iron flux over the past eight glacial cycles indicate that during glacial terminations, changes in Patagonia apparently preceded Antarctic sea-ice reduction — showing that multiple mechanisms may be responsible for different phases of CO2 increase during glacial terminations.


Science | 2011

800,000 Years of Abrupt Climate Variability

Stephen Barker; Gregor Knorr; R. Lawrence Edwards; Frédéric Parrenin; Aaron E. Putnam; Luke C Skinner; Eric W. Wolff; Martin Ziegler

Greenland climate variability for the past 800,000 years was inferred from the Antarctic ice-core temperature record. We constructed an 800,000-year synthetic record of Greenland climate variability based on the thermal bipolar seesaw model. Our Greenland analog reproduces much of the variability seen in the Greenland ice cores over the past 100,000 years. The synthetic record shows strong similarity with the absolutely dated speleothem record from China, allowing us to place ice core records within an absolute timeframe for the past 400,000 years. Hence, it provides both a stratigraphic reference and a conceptual basis for assessing the long-term evolution of millennial-scale variability and its potential role in climate change at longer time scales. Indeed, we provide evidence for a ubiquitous association between bipolar seesaw oscillations and glacial terminations throughout the Middle to Late Pleistocene.


Geophysical Research Letters | 2000

Speciation and rate of photochemical NO and NO2 production in Antarctic snow

Anna E. Jones; Rolf Weller; Eric W. Wolff; Hans-Werner Jacobi

Measurements were made of NO and NO2, in controlled experiments to investigate their production from snow. Throughout a diurnal cycle, measurements were made of ambient air and air from inside a snowblock. Enhanced concentrations of NO and NO2 (up to 15 pptv and 32 pptv respectively) were measured inside the snowblock. The production rate inside the block varied with intensity of incident radiation, and reached a maximum of 1.1×106 molecs/cm³/s for NO and 2.1 × 106 molecs/cm³/s for NO2. A second experiment, in which the snowblock was alternately exposed to sunlight and then shaded, confirmed that the diurnal production was driven by photochemistry rather than some other diurnally varying factor. Concentrations of nitrate in the snowblock did not change as a result of 50 hours of experiments, confirming that if nitrate is the source reservoir, it can not be rapidly depleted. Snowpack production may contribute significantly to NOx concentrations in the Antarctic lower troposphere.


Geophysical Research Letters | 2001

Measurements of NOx emissions from the Antarctic snowpack

Anna E. Jones; Rolf Weller; P. S. Anderson; Hans-Werner Jacobi; Eric W. Wolff; Otto Schrems; Heinrich Miller

It has been shown that NOx is produced photochemically within the snowpack of polar regions. If emitted to the atmosphere, this process could be a major source of NOx in remote snowcovered regions. We report here on measurements made at the German Antarctic station, Neumayer, during austral summer 1999, aimed at detecting and quantifying emissions of NOx from the surface snow. Gradients of NOx measured, and fluxes calculated using local meteorology measurements. On the 2 days of flux measurements, the derived fluxes showed continual release from the snow surface, varying between ∼0 and 3 × 108 molecs/cm²/s. When not subject to turbulence, the variation was coincident with the uv diurnal cycle, suggesting rapid release once photochemically produced. Scaling the diurnal average of Feb. 7th (1.3 × 108 molecs/cm²/s) suggests an annual emission over Antarctica of the order 0.0076TgN.


Geophysical Research Letters | 2001

A tentative chronology for the EPICA Dome Concordia Ice Core

Jakob Schwander; Jean Jouzel; Claus U. Hammer; J. R. Petit; Roberto Udisti; Eric W. Wolff

A tentative age scale (EDC1) for the last 45 kyr is established for the new 788-m EPICA Dome C ice core using a simple ice flow model. The age of volcanic eruptions, the end of the Younger Dryas event, and the estimated depth and age of elevated 10Be, about 41 kyr ago were used to calibrate the model parameters. The uncertainty of EDC1 is estimated to ±10 yr for 0 to 700 yr BP, up to ±200 yr back to 10 kyr BP, and up to ±2 kyr back to 41 kyr BP. The age of the air in the bubbles is calculated with a firn densification model. In the Holocene the air is about 2000 yr younger than the ice and about 5500 yr during the last glacial maximum.


Geophysical Research Letters | 2000

Frost flowers as a source of fractionated sea salt aerosol in the polar regions

Andrew M. Rankin; V. Auld; Eric W. Wolff

Frost flowers collected from the surface of new sea ice near the Brunt Ice Shelf, Antarctica, show depletion in sulphate and sodium relative to other sea water ions. This is consistent with loss of mirabilite (Na2SO4) during formation of the brine from which the frost flowers grow. Aerosol generated from frost flowers would have higher sodium:sulphate ratios than aerosol generated from sea water. This would explain low values of non-sea-salt sulphate encountered in winter aerosol, and winter layers in ice cores, at coastal Antarctic sites. Calculations confirm that the frost flower source should be significant compared to an open water source for coastal regions.


Geophysical Research Letters | 2002

Dust and sea salt variability in central East Antarctica (Dome C) over the last 45 kyrs and its implications for southern high-latitude climate

Regine Röthlisberger; Robert Mulvaney; Eric W. Wolff; Manuel A. Hutterli; Matthias Bigler; Stefan Sommer; Jean Jouzel

A detailed record of non-sea-salt calcium, a proxy for dust, and sea-salt sodium, a proxy for sea salt, covering the last 45 kyr is presented. It shows that in the first part of the transition from the last glacial period to the Holocene (18-15 kyr BP), the changes in dust flux mainly reflect changes at the dust source, namely vegetation cover and local climate. The changes in the later part of the transition (12-11 kyr BP) are similar in extent to the changes seen in sea salt and most likely reflect a reorganization of the atmospheric circulation. During the last glacial period, considerable variation of dust but not of sea salt is observed, pointing to climatic changes in Patagonia, the main dust source for Dome C. A comparison of the glacial records from Dome C and Taylor Dome suggests that similar influences controlled aerosol input at both sites during this period.


Journal of Geophysical Research | 2000

Factors controlling nitrate in ice cores : Evidence from the Dome C deep ice core

Regine Röthlisberger; Manuel A. Hutterli; Stefan Sommer; Eric W. Wolff; Robert Mulvaney

In order to estimate past changes in atmospheric NOx concentration, nitrate, an oxidation product of NOx, has often been measured in polar ice cores. In the frame of the European Project for Ice Coring in Antarctica (EPICA), a high-resolution nitrate record was obtained by continuous flow analysis (CFA) of a new deep ice core drilled at Dome C. This record allows a detailed comparison of nitrate with other chemical trace substances in polar snow under different climatic regimes. Previous studies showed that it would be difficult to make firm conclusions about atmospheric NOx concentrations based on ice core nitrate without a better understanding of the factors controlling NO3− deposition and preservation. At Dome C, initially high nitrate concentrations (over 500 ppb) decrease within the top meter to steady low values around 15 ppb that are maintained throughout the Holocene ice. Much higher concentrations (averaging 53 ppb) are found in ice from the Last Glacial Maximum (LGM). Combining this information with data from previous sampling elsewhere in Antarctica, it seems that under climatic conditions of the Holocene, temperature and accumulation rate are the key factors determining the NO3− concentration in the ice. Furthermore, ice layers with high acidity show a depletion of NO3−, but higher concentrations are found before and after the acidity layer, indicating that NO3− has been redistributed after deposition. Under glacial conditions, where NO3− shows a higher concentration level and also a larger variability, non-sea-salt calcium seems to act as a stabilizer, preventing volatilization of NO3− from the surface snow layers.

Collaboration


Dive into the Eric W. Wolff's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Chappellaz

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Hubertus Fischer

Oeschger Centre for Climate Change Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge