Erica L. Bradshaw-Pierce
University of Colorado Denver
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erica L. Bradshaw-Pierce.
Journal of Pharmacology and Experimental Therapeutics | 2010
James K. Gierse; Atli Thorarensen; Konstantine Beltey; Erica L. Bradshaw-Pierce; Luz A. Cortes-Burgos; Troii Hall; Amy Johnston; Michael P. Murphy; Olga V. Nemirovskiy; Shinji Ogawa; Lyle E. Pegg; Matthew James Pelc; Michael J. Prinsen; Mark E. Schnute; Jay M. Wendling; Steve Wene; Robin A. Weinberg; Authur Wittwer; Ben S. Zweifel; Jaime L. Masferrer
Autotaxin is the enzyme responsible for the production of lysophosphatidic acid (LPA) from lysophosphatidyl choline (LPC), and it is up-regulated in many inflammatory conditions, including but not limited to cancer, arthritis, and multiple sclerosis. LPA signaling causes angiogenesis, mitosis, cell proliferation, and cytokine secretion. Inhibition of autotaxin may have anti-inflammatory properties in a variety of diseases; however, this hypothesis has not been tested pharmacologically because of the lack of potent inhibitors. Here, we report the development of a potent autotaxin inhibitor, PF-8380 [6-(3-(piperazin-1-yl)propanoyl)benzo[d]oxazol-2(3H)-one] with an IC50 of 2.8 nM in isolated enzyme assay and 101 nM in human whole blood. PF-8380 has adequate oral bioavailability and exposures required for in vivo testing of autotaxin inhibition. Autotaxins role in producing LPA in plasma and at the site of inflammation was tested in a rat air pouch model. The specific inhibitor PF-8380, dosed orally at 30 mg/kg, provided >95% reduction in both plasma and air pouch LPA within 3 h, indicating autotaxin is a major source of LPA during inflammation. At 30 mg/kg PF-8380 reduced inflammatory hyperalgesia with the same efficacy as 30 mg/kg naproxen. Inhibition of plasma autotaxin activity correlated with inhibition of autotaxin at the site of inflammation and in ex vivo whole blood. Furthermore, a close pharmacokinetic/pharmacodynamic relationship was observed, which suggests that LPA is rapidly formed and degraded in vivo. PF-8380 can serve as a tool compound for elucidating LPAs role in inflammation.
Clinical Cancer Research | 2007
Erica L. Bradshaw-Pierce; S. Gail Eckhardt; Daniel L. Gustafson
Purpose: Docetaxel (Taxotere), an important chemotherapeutic agent with shown activity in a broad range of cancers, is being investigated for use in combination therapies and as an antiangiogenic agent. Docetaxel exhibits a complex pharmacologic profile with high interpatient variability. Pharmacokinetic models capable of predicting exposure under various dosing regimens would aid the rational development of clinical protocols. Experimental Design: A pharmacokinetic study of docetaxel at 5 and 20 mg/kg was carried out in female BALB/c mice. Tissues were collected at various time points and analyzed by liquid chromatography-tandem mass spectrometry. Time course tissue distribution and pharmacokinetic data were used to build and validate a physiologically based pharmacokinetic (PBPK) model in mice. Specific and nonspecific tissue partitioning, metabolism, and elimination data were coupled with mouse physiologic variables to develop a PBPK model that describes docetaxel plasma and tissue pharmacokinetic. The PBPK model was then modified with human model variables to predict the plasma distribution of docetaxel. Results: Resulting simulation data were compared with actual measured data obtained from our pharmacokinetic study (mouse), or from published data (human), using pharmacokinetic variables calculated using compartmental or noncompartmental analysis to assess model predictability. Conclusions: The murine PBPK model developed can accurately predict plasma and tissue levels at the 5 and 20 mg/kg doses. The human PBPK model is capable of estimating plasma levels at 30, 36, and 100 mg/m2. This will enable us to develop and test various dosing regimens (e.g., metronomic schedules and combination therapies) to achieve specific tissue and plasma concentrations to maximize therapeutic benefit while minimizing toxicity.
Radiology | 2010
Natalie J. Serkova; Brandon Renner; Brian A. Larsen; Conrad R. Stoldt; Kendra M. Hasebroock; Erica L. Bradshaw-Pierce; V. Michael Holers; Joshua M. Thurman
PURPOSE To determine the feasibility of T2-weighted magnetic resonance (MR) imaging in the noninvasive quantification of renal inflammation by using superparamagnetic iron oxide (SPIO) nanoparticles targeted to tissue-bound C3 activation fragments in a mouse model of lupus nephritis. MATERIALS AND METHODS All animal procedures were approved by the University of Colorado-Denver animal care and use committee. SPIO nanoparticles were encapsulated by using amine-functionalized phospholipids. A recombinant protein containing the C3d-binding region of complement receptor type 2 (CR2) was then conjugated to the surface of the SPIO nanoparticle. Five MRL/lpr mice (a model of lupus nephritis) and six C57BL/6 wild-type mice were assessed with T2-weighted MR imaging at baseline and after SPIO injection. The same five MRL/lpr mice and three C57BL/6 mice also underwent MR imaging after injection of CR2-targeted SPIO. A series of T2-weighted pulses with 16 echo times was used to enable precise T2 mapping and calculation of T2 relaxation times in the cortex and outer and inner medulla of the kidneys, as well as in the spleen, muscle, and fat. The effects of treatment and animal genotype on T2 relaxation times were analyzed with repeated-measures analysis of variance. RESULTS At baseline, the T2-weighted signal intensity in the kidneys of MRL/lpr mice was higher than that in the kidneys of wild-type mice. Injection of untargeted SPIO did not alter the T2-weighted signal in the kidneys in either strain of mice. Injection of CR2-targeted SPIO in MRL/lpr mice, however, caused a significant accumulation of targeted iron oxide with a subsequent decrease in T2 relaxation times in the cortex and outer and inner medulla of the kidneys. No changes in T2 relaxation time were observed in the wild-type mice after injection of targeted SPIO. CONCLUSION Injection of CR2-conjugated SPIO caused a significant reduction in T2-weighted MR imaging signal and T2 relaxation time in nephritic kidneys.
Pharmacology & Therapeutics | 2014
Todd M. Pitts; S. Lindsey Davis; S. Gail Eckhardt; Erica L. Bradshaw-Pierce
Cellular proliferation is a tightly controlled set of events that is regulated by numerous nuclear protein kinases. The proteins involved include checkpoint kinases (CHK), cyclin-dependent kinases (CDK), which regulate the cell cycle and aurora kinases (AURK) and polo-like kinases (PLK), which regulate mitosis. In cancer, these nuclear kinases are often dysregulated and cause uncontrolled cell proliferation and growth. Much work has gone into developing novel therapeutics that target each of these protein kinases in cancer but none have been approved in patients. In this review we provide an overview of the current compounds being developed clinically to target these nuclear kinases involved in regulating the cell cycle and mitosis.
Clinical Cancer Research | 2010
John J. Tentler; Erica L. Bradshaw-Pierce; Natalie J. Serkova; Kendra M. Hasebroock; Todd M. Pitts; Jennifer R. Diamond; Graham C. Fletcher; Mark R. Bray; S. Gail Eckhardt
Purpose: This in vivo study was designed to investigate the efficacy of ENMD-2076, a small-molecule kinase inhibitor with activity against the Aurora kinases A and B, and several other tyrosine kinases linked to cancer, including vascular endothelial growth factor receptor 2, cKit, and fibroblast growth factor receptor 1, against murine xenograft models of human colorectal cancer (CRC). Experimental Design: HT-29 CRC cell line xenografts were treated with either vehicle or ENMD-2076 (100 or 200 mg/kg) orally daily for 28 days. Tumor growth inhibition, dynamic contrast-enhanced magnetic resonance imaging, and 18FDG-positron emission tomography were conducted to assess the antiproliferative, antiangiogenic, and antimetabolic responses, respectively. Effects on proliferation were also analyzed by immunohistochemical methods. Additionally, three patient-derived xenografts from primary and metastatic sites were treated with ENMD-2076 (100 mg/kg) and assessed for tumor growth inhibition. Results: In the HT-29 xenograft model, ENMD-2076 induced initial tumor growth inhibition followed by regression. Treatment was associated with significant tumor blanching, indicating a loss of vascularity and substantial reductions in tumor vascular permeability and perfusion as measured by dynamic contrast-enhanced magnetic resonance imaging. Positron emission tomography scanning showed significant decreases in 18FDG uptake at days 3 and 21 of treatment, which was associated with a marked reduction in proliferation as assessed by Ki-67. All three of the patient-derived xenografts tested were sensitive to treatment with ENMD 2076 as measured by tumor growth inhibition. Conclusions: ENMD-2076 showed robust antitumor activity against cell line and patient-derived xenograft models of CRC that is detectable by functional imaging, supporting clinical investigation of this agent in CRC. Clin Cancer Res; 16(11); 2989–98. ©2010 AACR.
BMC Systems Biology | 2013
Sirus Palsson; Timothy P. Hickling; Erica L. Bradshaw-Pierce; Michael G. Zager; Karin Jooss; Peter J. O’Brien; Mary E. Spilker; Bernhard O. Palsson; Paolo Vicini
BackgroundThe complexity and multiscale nature of the mammalian immune response provides an excellent test bed for the potential of mathematical modeling and simulation to facilitate mechanistic understanding. Historically, mathematical models of the immune response focused on subsets of the immune system and/or specific aspects of the response. Mathematical models have been developed for the humoral side of the immune response, or for the cellular side, or for cytokine kinetics, but rarely have they been proposed to encompass the overall system complexity. We propose here a framework for integration of subset models, based on a system biology approach.ResultsA dynamic simulator, the Fully-integrated Immune Response Model (FIRM), was built in a stepwise fashion by integrating published subset models and adding novel features. The approach used to build the model includes the formulation of the network of interacting species and the subsequent introduction of rate laws to describe each biological process. The resulting model represents a multi-organ structure, comprised of the target organ where the immune response takes place, circulating blood, lymphoid T, and lymphoid B tissue. The cell types accounted for include macrophages, a few T-cell lineages (cytotoxic, regulatory, helper 1, and helper 2), and B-cell activation to plasma cells. Four different cytokines were accounted for: IFN-γ, IL-4, IL-10 and IL-12. In addition, generic inflammatory signals are used to represent the kinetics of IL-1, IL-2, and TGF-β. Cell recruitment, differentiation, replication, apoptosis and migration are described as appropriate for the different cell types. The model is a hybrid structure containing information from several mammalian species. The structure of the network was built to be physiologically and biochemically consistent. Rate laws for all the cellular fate processes, growth factor production rates and half-lives, together with antibody production rates and half-lives, are provided. The results demonstrate how this framework can be used to integrate mathematical models of the immune response from several published sources and describe qualitative predictions of global immune system response arising from the integrated, hybrid model. In addition, we show how the model can be expanded to include novel biological findings. Case studies were carried out to simulate TB infection, tumor rejection, response to a blood borne pathogen and the consequences of accounting for regulatory T-cells.ConclusionsThe final result of this work is a postulated and increasingly comprehensive representation of the mammalian immune system, based on physiological knowledge and susceptible to further experimental testing and validation. We believe that the integrated nature of FIRM has the potential to simulate a range of responses under a variety of conditions, from modeling of immune responses after tuberculosis (TB) infection to tumor formation in tissues. FIRM also has the flexibility to be expanded to include both complex and novel immunological response features as our knowledge of the immune system advances.
Clinical Cancer Research | 2012
M. Pia Morelli; John J. Tentler; Gillian N. Kulikowski; Aik Choon Tan; Erica L. Bradshaw-Pierce; Todd M. Pitts; Amy M. Brown; Sujatha Nallapareddy; John J. Arcaroli; Natalie J. Serkova; Manuel Hidalgo; Fortunato Ciardiello; S. Gail Eckhardt
Purpose: Despite the availability of several active combination regimens for advanced colorectal cancer (CRC), the 5-year survival rate remains poor at less than 10%, supporting the development of novel therapeutic approaches. In this study, we focused on the preclinical assessment of a rationally based combination against KRAS-mutated CRC by testing the combination of the MEK inhibitor, selumetinib, and vorinostat, a histone deacetylase (HDAC) inhibitor. Experimental Design: Transcriptional profiling and gene set enrichment analysis (baseline and posttreatment) of CRC cell lines provided the rationale for the combination. The activity of selumetinib and vorinostat against the KRAS-mutant SW620 and SW480 CRC cell lines was studied in vitro and in vivo. The effects of this combination on tumor phenotype were assessed using monolayer and 3-dimensional cultures, flow cytometry, apoptosis, and cell migration. In vivo, tumor growth inhibition, 18F-fluoro-deoxy-glucose positron emission tomography (FDG-PET), and proton nuclear magnetic resonance were carried out to evaluate the growth inhibitory and metabolic responses, respectively, in CRC xenografts. Results: In vitro, treatment with selumetinib and vorinostat resulted in a synergistic inhibition of proliferation and spheroid formation in both CRC cell lines. This inhibition was associated with an increase in apoptosis, cell-cycle arrest in G1, and reduced cellular migration and VEGF-A secretion. In vivo, the combination resulted in additive tumor growth inhibition. The metabolic response to selumetinib and vorinostat consisted of significant inhibition of membrane phospholipids; no significant changes in glucose uptake or metabolism were observed in any of the treatment groups. Conclusion: These data indicate that the rationally based combination of the mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor, selumetinib, with the HDAC inhibitor vorinostat results in synergistic antiproliferative activity against KRAS-mutant CRC cell lines in vitro. In vivo, the combination showed additive effects that were associated with metabolic changes in phospholipid turnover, but not on FDG-PET, indicating that the former is a more sensitive endpoint of the combination effects. Clin Cancer Res; 18(4); 1051–62. ©2011 AACR.
PLOS ONE | 2014
Todd M. Pitts; Timothy P. Newton; Erica L. Bradshaw-Pierce; Rebecca Addison; John J. Arcaroli; Peter J. Klauck; Stacey Bagby; Stephanie L. Hyatt; Alicia Purkey; John J. Tentler; Aik Choon Tan; Wells A. Messersmith; S. Gail Eckhardt; Stephen Leong
Background The activation of the MAPK and PI3K/AKT/mTOR pathways is implicated in the majority of cancers. Activating mutations in both of these pathways has been described in colorectal cancer (CRC), thus indicating their potential as therapeutic targets. This study evaluated the combination of a PI3K/mTOR inhibitor (PF-04691502/PF-502) in combination with a MEK inhibitor (PD-0325901/PD-901) in CRC cell lines and patient-derived CRC tumor xenograft models (PDTX). Materials and Methods The anti-proliferative effects of PF-502 and PD-901 were assessed as single agents and in combination against a panel of CRC cell lines with various molecular backgrounds. Synergy was evaluated using the Bliss Additivity method. In selected cell lines, we investigated the combination effects on downstream effectors by immunoblotting. The combination was then evaluated in several fully genetically annotated CRC PDTX models. Results The in vitro experiments demonstrated a wide range of IC50 values for both agents against a cell line panel. The combination of PF-502 and PD-901 demonstrated synergistic anti-proliferative activity with Bliss values in the additive range. As expected, p-AKT and p-ERK were downregulated by PF-502 and PD-901, respectively. In PDTX models, following a 30-day exposure to PF-502, PD-901 or the combination, the combination demonstrated enhanced reduction in tumor growth as compared to either single agent regardless of KRAS or PI3K mutational status. Conclusions The combination of a PI3K/mTOR and a MEK inhibitor demonstrated enhanced anti-proliferative effects against CRC cell lines and PDTX models.
Frontiers in Pharmacology | 2013
Erica L. Bradshaw-Pierce; Todd M. Pitts; Aik Choon Tan; Kelly McPhillips; Mark A. West; Daniel L. Gustafson; Charles Halsey; Leslie Nguyen; Nathan V. Lee; Julie L.C. Kan; Brion W. Murray; S. Gail Eckhardt
P-glycoprotein (P-gp), a member of the ATP-binding cassette transporter family, is overexpressed in a number of different cancers and some studies show that P-gp overexpression can be correlated to poor prognosis or therapeutic resistance. Here we sought to elucidate if PF-3758309 (PF-309), a novel p-21 activated kinase inhibitor, efficacy was influenced by tumor P-gp. Based on in vitro proliferation data, a panel of colorectal cancer cell lines were ranked as sensitive or resistant and ABCB1 (P-gp) expression was evaluated by microarray for these cell lines. P-gp expression was determined by western blot and activity determined by rhodamine efflux assay. Knock down of P-gp and pharmacologic inhibition of P-gp to restore PF-309 activity was performed in vitro. PF-309 activity was evaluated in vivo in cell line xenograft models and in primary patient derived tumor xenografts (PDTX). Mice were treated with 25 mg/kg PF-309 orally, twice daily. On the last day of treatment, tumor and plasma were collected for PF-309 analysis. Here we show that ABCB1 gene expression correlates with resistance to PF-309 treatment in vitro and the expression and activity of P-gp was verified in a panel of resistant cells. Furthermore, inhibition of P-gp increased the sensitivity of resistant cells, resulting in a 4–100-fold decrease in the IC50s. Eleven cell line xenografts and 12 PDTX models were treated with PF-309. From the cell line xenografts, we found a significant correlation between ABCB1 gene expression profiles and tumor response. We evaluated tumor and plasma concentrations for eight tumor models (three cell line xenografts and five PDTX models) and a significant correlation was found between tumor concentration and response. Additionally, we show that tumor concentration is approximately fourfold lower in tumors that express P-gp, verified by western blot. Our in vitro and in vivo data strongly suggests that PF-309 efficacy is influenced by the expression of tumor P-gp.
Frontiers in Pharmacology | 2013
Todd M. Pitts; Gillian N. Kulikowski; Aik Choon Tan; Brion W. Murray; John J. Arcaroli; John J. Tentler; Anna Spreafico; Heather M. Selby; Maria I. Kachaeva; Kelly McPhillips; Blair C. Britt; Erica L. Bradshaw-Pierce; Wells A. Messersmith; Marileila Varella-Garcia; S. Gail Eckhardt
The p21-activated kinase (PAK) family of serine/threonine kinases, which are overexpressed in several cancer types, are critical mediators of cell survival, motility, mitosis, transcription, and translation. In the study presented here, we utilized a panel of colorectal cancer (CRC) cell lines to identify potential biomarkers of sensitivity or resistance that may be used to individualize therapy to the PAK inhibitor PF-03758309. We observed a wide range of proliferative responses in the CRC cell lines exposed to PF-03758309, this response was recapitulated in other phenotypic assays such as anchorage-independent growth, three-dimensional (3D) tumor spheroid formation, and migration. Interestingly, we observed that cells most sensitive to PF-03758309 exhibited up-regulation of genes associated with a mesenchymal phenotype (CALD1, VIM, ZEB1) and cells more resistant had an up-regulation of genes associated with an epithelial phenotype (CLDN2, CDH1, CLDN3, CDH17) allowing us to derive an epithelial-to-mesenchymal transition (EMT) gene signature for this agent. We assessed the functional role of EMT-associated genes in mediating responsiveness to PF-3758309, by targeting known genes and transcriptional regulators of EMT. We observed that suppression of genes associated with the mesenchymal phenotype conferred resistance to PF-3758309, in vitro and in vivo. These results indicate that PAK inhibition is associated with a unique response phenotype in CRC and that further studies should be conducted to facilitate both patient selection and rational combination strategies with these agents.