Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John J. Tentler is active.

Publication


Featured researches published by John J. Tentler.


Nature Reviews Clinical Oncology | 2012

Patient-derived tumour xenografts as models for oncology drug development

John J. Tentler; Aik Choon Tan; Colin D. Weekes; Antonio Jimeno; Stephen Leong; Todd M. Pitts; John J. Arcaroli; Wells A. Messersmith; S. Gail Eckhardt

Progress in oncology drug development has been hampered by a lack of preclinical models that reliably predict clinical activity of novel compounds in cancer patients. In an effort to address these shortcomings, there has been a recent increase in the use of patient-derived tumour xenografts (PDTX) engrafted into immune-compromised rodents such as athymic nude or NOD/SCID mice for preclinical modelling. Numerous tumour-specific PDTX models have been established and, importantly, they are biologically stable when passaged in mice in terms of global gene-expression patterns, mutational status, metastatic potential, drug responsiveness and tumour architecture. These characteristics might provide significant improvements over standard cell-line xenograft models. This Review will discuss specific PDTX disease examples illustrating an overview of the opportunities and limitations of these models in cancer drug development, and describe concepts regarding predictive biomarker development and future applications.


Journal of Clinical Oncology | 2013

Role of ubiquitin ligases and the proteasome in oncogenesis: novel targets for anticancer therapies.

Lindsey N. Micel; John J. Tentler; Peter G. Smith; Gail Eckhardt

The ubiquitin proteasome system (UPS) regulates the ubiquitination, and thus degradation and turnover, of many proteins vital to cellular regulation and function. The UPS comprises a sequential series of enzymatic processes using four key enzyme families: E1 (ubiquitin-activating enzymes), E2 (ubiquitin-carrier proteins), E3 (ubiquitin-protein ligases), and E4 (ubiquitin chain assembly factors). Because the UPS is a crucial regulator of the cell cycle, and abnormal cell-cycle control can lead to oncogenesis, aberrancies within the UPS pathway can result in a malignant cellular phenotype and thus has become an attractive target for novel anticancer agents. This article will provide an overall review of the mechanics of the UPS, describe aberrancies leading to cancer, and give an overview of current drug therapies selectively targeting the UPS.


Journal of Clinical Investigation | 2013

MERTK receptor tyrosine kinase is a therapeutic target in melanoma

Jennifer Schlegel; Maria J. Sambade; Susan Sather; Stergios J. Moschos; Aik Choon Tan; Amanda Winges; Deborah DeRyckere; Craig Carson; Dimitri G. Trembath; John J. Tentler; S. Gail Eckhardt; Pei Fen Kuan; Ronald L. Hamilton; Lyn M. Duncan; C. Ryan Miller; Nana Nikolaishvili-Feinberg; Bentley R. Midkiff; Jing Liu; Weihe Zhang; Chao Yang; Xiaodong Wang; Stephen V. Frye; H. Shelton Earp; Janiel M. Shields; Douglas K. Graham

Metastatic melanoma is one of the most aggressive forms of cutaneous cancers. Although recent therapeutic advances have prolonged patient survival, the prognosis remains dismal. C-MER proto-oncogene tyrosine kinase (MERTK) is a receptor tyrosine kinase with oncogenic properties that is often overexpressed or activated in various malignancies. Using both protein immunohistochemistry and microarray analyses, we demonstrate that MERTK expression correlates with disease progression. MERTK expression was highest in metastatic melanomas, followed by primary melanomas, while the lowest expression was observed in nevi. Additionally, over half of melanoma cell lines overexpressed MERTK compared with normal human melanocytes; however, overexpression did not correlate with mutations in BRAF or RAS. Stimulation of melanoma cells with the MERTK ligand GAS6 resulted in the activation of several downstream signaling pathways including MAPK/ERK, PI3K/AKT, and JAK/STAT. MERTK inhibition via shRNA reduced MERTK-mediated downstream signaling, reduced colony formation by up to 59%, and diminished tumor volume by 60% in a human melanoma murine xenograft model. Treatment of melanoma cells with UNC1062, a novel MERTK-selective small-molecule tyrosine kinase inhibitor, reduced activation of MERTK-mediated downstream signaling, induced apoptosis in culture, reduced colony formation in soft agar, and inhibited invasion of melanoma cells. This work establishes MERTK as a therapeutic target in melanoma and provides a rationale for the continued development of MERTK-targeted therapies.


Molecular Cancer Therapeutics | 2010

Identification of Predictive Markers of Response to the MEK1/2 Inhibitor Selumetinib (AZD6244) in K-ras–Mutated Colorectal Cancer

John J. Tentler; Sujatha Nallapareddy; Aik Choon Tan; Anna Spreafico; Todd M. Pitts; M. Pia Morelli; Heather M. Selby; Maria I. Kachaeva; Sara A. Flanigan; Gillian N. Kulikowski; Stephen Leong; John J. Arcaroli; Wells A. Messersmith; S. Gail Eckhardt

Mutant K-ras activity leads to the activation of the RAS/RAF/MEK/ERK pathway in approximately 44% of colorectal cancer (CRC) tumors. Accordingly, several inhibitors of the MEK pathway are under clinical evaluation in several malignancies including CRC. The aim of this study was to develop and characterize predictive biomarkers of response to the MEK1/2 inhibitor AZD6244 in CRC in order to maximize the clinical utility of this agent. Twenty-seven human CRC cell lines were exposed to AZD6244 and classified according to the IC50 value as sensitive (≤0.1 μmol/L) or resistant (>1 μmol/L). All cell lines were subjected to immunoblotting for effector proteins, K-ras/BRAF mutation status, and baseline gene array analysis. Further testing was done in cell line xenografts and K-ras mutant CRC human explants models to develop a predictive genomic classifier for AZD6244. The most sensitive and resistant cell lines were subjected to differential gene array and pathway analyses. Members of the Wnt signaling pathway were highly overexpressed in cell lines resistant to AZD6244 and seem to be functionally involved in mediating resistance by shRNA knockdown studies. Baseline gene array data from CRC cell lines and xenografts were used to develop a k-top scoring pair (k-TSP) classifier, which predicted with 71% accuracy which of a test set of patient-derived K-ras mutant CRC explants would respond to AZD6244, providing the basis for a patient-selective clinical trial. These results also indicate that resistance to AZD6244 may be mediated, in part, by the upregulation of the Wnt pathway, suggesting potential rational combination partners for AZD6244 in CRC. Mol Cancer Ther; 9(12); 3351–62. ©2010 AACR.


Clinical Cancer Research | 2010

Development of an Integrated Genomic Classifier for a Novel Agent in Colorectal Cancer: Approach to Individualized Therapy in Early Development

Todd M. Pitts; Aik Choon Tan; Gillian N. Kulikowski; John J. Tentler; Amy M. Brown; Sara A. Flanigan; Stephen Leong; Christopher D. Coldren; Fred R. Hirsch; Marileila Varella-Garcia; Christopher Korch; S. Gail Eckhardt

Background: A plethora of agents is in early stages of development for colorectal cancer (CRC), including those that target the insulin-like growth factor I receptor (IGFIR) pathway. In the current environment of numerous cancer targets, it is imperative that patient selection strategies be developed with the intent of preliminary testing in the latter stages of phase I trials. The goal of this study was to develop and characterize predictive biomarkers for an IGFIR tyrosine kinase inhibitor, OSI-906, that could be applied in CRC-specific studies of this agent. Methods: Twenty-seven CRC cell lines were exposed to OSI-906 and classified according to IC50 value as sensitive (≤1.5 μmol/L) or resistant (>5 μmol/L). Cell lines were subjected to immunoblotting and immunohistochemistry for effector proteins, IGFIR copy number by fluorescence in situ hybridization, KRAS/BRAF/phosphoinositide 3-kinase mutation status, and baseline gene array analysis. The most sensitive and resistant cell lines were used for gene array and pathway analyses, along with shRNA knockdown of highly ranked genes. The resulting integrated genomic classifier was then tested against eight human CRC explants in vivo. Results: Baseline gene array data from cell lines and xenografts were used to develop a k-top scoring pair (k-TSP) classifier, which, in combination with IGFIR fluorescence in situ hybridization and KRAS mutational status, was able to predict with 100% accuracy a test set of patient-derived CRC xenografts. Conclusions: These results indicate that an integrated approach to the development of individualized therapy is feasible and should be applied early in the development of novel agents, ideally in conjunction with late-stage phase I trials. Clin Cancer Res; 16(12); 3193–204. ©2010 AACR.


Oncogene | 2004

ESX induces transformation and functional epithelial to mesenchymal transition in MCF-12A mammary epithelial cells

Pepper Schedin; Kristin Eckel-Mahan; Shauntae M. McDaniel; Jason D. Prescott; John J. Tentler; Arthur Gutierrez-Hartmann

ESX is an epithelial-restricted member of a large family of transcription factors known as the Ets family. ESX expression has been shown to be correlated with Her2/neu proto-oncogene amplification in highly aggressive breast cancers and induced by Her2/neu in breast cell lines, but its role in tumorigenesis is unknown. Previously, we have shown that ESX enhances breast cell survival in colony-formation assays. In order to determine whether ESX can act as a transforming gene, we stably transfected MCF-12A human mammary epithelial cells with the ESX expression vector, pCGN2-HA-ESX. The MCF-12A cell line is immortalized, but nontransformed, and importantly, these cells fail to express endogenous ESX protein. We used pCGN2-HA-Ets-2 and pSVRas expression vectors as positive controls for transformation. Like HA-Ets-2 and V12-Ras, stable expression of ESX induced EGF-independent proliferation, serum-independent MAPK phosphorylation and growth in soft agar. Additionally, stable ESX expression conferred increased cell adhesion, motility and invasion in two-dimensional and transwell filter assays, and an epithelial to mesenchymal morphological transition. In three-dimensional cultures, parental and vector control (pCGN2) cells formed highly organized duct-like structures with evidence of cell polarity, ECM adhesion-dependent proliferation and cell survival, and lack of cellular invasion into surrounding matrix. Remarkably, the ESX stable cells formed solid, disorganized structures, with lack of cell polarity, loss of adhesion junctions and cytokeratin staining and loss of dependence on ECM adhesion for cell proliferation and survival. In addition, ESX cells invaded the surrounding matrix, indicative of a transformed and metastatic phenotype. Taken together, these data show that ESX expression alone confers a transformed and in vitro metastatic phenotype to otherwise normal MCF-12A cells.


Molecular Cancer Therapeutics | 2009

Vorinostat and bortezomib exert synergistic antiproliferative and proapoptotic effects in colon cancer cell models.

Todd M. Pitts; Mark Morrow; Sara Kaufman; John J. Tentler; S. Gail Eckhardt

Despite the availability of several Food and Drug Administration-approved drugs, advanced inoperable colorectal cancer remains incurable. In this study, we focused on the development of combined molecular targeted therapies against colon cancer by testing the efficacy of the combination of the histone deacetylase inhibitor vorinostat with the proteasome inhibitor bortezomib to determine if this resulted in synergistic antitumor effects against colorectal cancer. The effects of the histone deacetylase inhibitor vorinostat in combination with the proteasome inhibitor bortezomib on the growth of two colorectal cancer cell lines were assessed with regard to proliferation, cell cycle arrest, and apoptosis. Treatment with the combination of vorinostat and bortezomib resulted in a synergistic decrease in proliferation of both colorectal cancer cell lines compared with treatment with single agents alone. This inhibition was associated with a synergistic increase in apoptosis as measured by caspase-3/7 activity and cleaved poly(ADP-ribose) polymerase. In addition, we observed an increase in the proapoptotic protein BIM and in the number of cells arrested in the G2-M phase of the cell cycle. Although p21 levels were significantly increased, short hairpin RNA knockdown of p21 did not lead to changes in proliferation in response to the combination of drugs, indicating that although p21 is a target of these drugs, it is not required to mediate their antiproliferative effects. These data indicate that combination treatment with vorinostat and bortezomib result in synergistic antiproliferative and proapoptotic effects against colon cancer cell lines, providing a rational basis for the clinical use of this combination for the treatment of colorectal cancer. [Mol Cancer Ther 2009;8(2):342–9]


Nature Chemical Biology | 2012

ATM and MET kinases are synthetic lethal with nongenotoxic activation of p53

Kelly D. Sullivan; Nuria Padilla-Just; Ryan E. Henry; Christopher C. Porter; Jihye Kim; John J. Tentler; S. Gail Eckhardt; Aik Choon Tan; James DeGregori; Joaquín M. Espinosa

The p53 tumor suppressor orchestrates alternative stress responses including cell cycle arrest and apoptosis, but the mechanisms defining cell fate upon p53 activation are poorly understood. Several small molecule activators of p53 have been developed, including Nutlin-3, but their therapeutic potential is limited by the fact that they induce reversible cell cycle arrest in most cancer cell types. We report here the results of a ‘Synthetic Lethal with Nutlin-3’ genome-wide shRNA screen, which revealed that the ATM and MET kinases govern cell fate choice upon p53 activation. Genetic or pharmacological interference with ATM or MET activity converts the cellular response from cell cycle arrest into apoptosis in diverse cancer cell types without affecting expression of key p53 target genes. ATM and MET inhibitors enable Nutlin-3 to kill tumor spheroids. These results identify novel pathways controlling the cellular response to p53 activation and aid in the design of p53-based therapies.


Clinical Cancer Research | 2013

Rational Combination of a MEK Inhibitor, Selumetinib, and the Wnt/Calcium Pathway Modulator, Cyclosporin A, in Preclinical Models of Colorectal Cancer

Anna Spreafico; John J. Tentler; Todd M. Pitts; Aik Choon Tan; Mark A. Gregory; John J. Arcaroli; Peter J. Klauck; Martine McManus; Ryan J. Hansen; Jihye Kim; Lindsey N. Micel; Heather M. Selby; Timothy P. Newton; Kelly McPhillips; Daniel L. Gustafson; James DeGregori; Wells A. Messersmith; Robert A. Winn; S. Gail Eckhardt

Purpose: The mitogen-activated protein kinase (MAPK) pathway is a crucial regulator of cell proliferation, survival, and resistance to apoptosis. MEK inhibitors are being explored as a treatment option for patients with KRAS-mutant colorectal cancer who are not candidates for EGFR-directed therapies. Initial clinical results of MEK inhibitors have yielded limited single-agent activity in colorectal cancer, indicating that rational combination strategies are needed. Experimental Design: In this study, we conducted unbiased gene set enrichment analysis and synthetic lethality screens with selumetinib, which identified the noncanonical Wnt/Ca++ signaling pathway as a potential mediator of resistance to the MEK1/2 inhibitor selumetinib. To test this, we used shRNA constructs against relevant WNT receptors and ligands resulting in increased responsiveness to selumetinib in colorectal cancer cell lines. Further, we evaluated the rational combination of selumetinib and WNT pathway modulators and showed synergistic antiproliferative effects in in vitro and in vivo models of colorectal cancer. Results: Importantly, this combination not only showed tumor growth inhibition but also tumor regression in the more clinically relevant patient-derived tumor explant (PDTX) models of colorectal cancer. In mechanistic studies, we observed a trend toward increased markers of apoptosis in response to the combination of MEK and WntCa++ inhibitors, which may explain the observed synergistic antitumor effects. Conclusions: These results strengthen the hypothesis that targeting both the MEK and Wnt pathways may be a clinically effective rational combination strategy for patients with metastatic colorectal cancer. Clin Cancer Res; 19(15); 4149–62. ©2013 AACR.


Molecular Cancer Therapeutics | 2009

Targeting vascular endothelial growth factor receptor-1 and -3 with cediranib (AZD2171): effects on migration and invasion of gastrointestinal cancer cell lines

M. Pia Morelli; Amy M. Brown; Todd M. Pitts; John J. Tentler; Fortunato Ciardiello; Anderson J. Ryan; Juliane M. Jürgensmeier; S. Gail Eckhardt

The effect of vascular endothelial growth factor (VEGF) ligands and cediranib on tumor cell proliferation, migration, and invasion was determined. It has recently been suggested that autocrine signaling through the VEGF receptor (VEGFR) pathway may play a role in tumor cell survival, invasion, and migration. The purpose of the present study was to determine the expression of VEGFRs and VEGFR ligands in a panel of gastrointestinal carcinoma cells. Additionally, we evaluated the effects of VEGF autocrine signaling on tumor cell proliferation, migration, and invasion utilizing cediranib (AZD2171), a pan-VEGFR inhibitor. Five colorectal, three pancreatic, and two hepatocellular carcinoma cell lines were screened for VEGFR and VEGF expression by several methods. Expression of VEGFR-1 and VEGFR-3 was cell line–dependent, whereas VEGFR-2 was not detected. Secretion of VEGF-A was detected in the supernatants of all cell lines whereas VEGF-C secretion was detected in the Panc-1, MiaPaca2, and Hep1 cells only. Tumor cells showed increased migratory activity, but not proliferation, when stimulated with VEGFs. The pan-VEGFR inhibitor cediranib (100 nmol/L) inhibited tumor cell migration and invasion, with no effects on proliferation. Cediranib decreased VEGFR-1 and VEGFR-3 phosphorylation as well as activation of downstream effectors. VEGFR-1 and VEGFR-3 expression was detected in all the gastrointestinal carcinoma cells evaluated. Although activation of the VEGF pathway did not affect cell proliferation, our data indicate that this pathway seems to play a role in tumor cell migration and invasion in these cell lines. Therefore, inhibition of VEGFR by cediranib may represent a clinically relevant treatment option for gastrointestinal tumors. [Mol Cancer Ther 2009;8(9):2546–58]

Collaboration


Dive into the John J. Tentler's collaboration.

Top Co-Authors

Avatar

Todd M. Pitts

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Gail Eckhardt

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Jennifer R. Diamond

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Stacey Bagby

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Anna Capasso

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

John J. Arcaroli

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Anna Spreafico

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Heather M. Selby

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge