Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erica Larschan is active.

Publication


Featured researches published by Erica Larschan.


Nature | 2011

Comprehensive analysis of the chromatin landscape in Drosophila melanogaster

Peter V. Kharchenko; Artyom A. Alekseyenko; Yuri B. Schwartz; Aki Minoda; Nicole C. Riddle; Jason Ernst; Peter J. Sabo; Erica Larschan; Andrey A. Gorchakov; Tingting Gu; Daniela Linder-Basso; Annette Plachetka; Gregory Shanower; Michael Y. Tolstorukov; Lovelace J. Luquette; Ruibin Xi; Youngsook L. Jung; Richard Park; Eric P. Bishop; Theresa P. Canfield; Richard Sandstrom; Robert E. Thurman; David M. MacAlpine; John A. Stamatoyannopoulos; Manolis Kellis; Sarah C. R. Elgin; Mitzi I. Kuroda; Vincenzo Pirrotta; Gary H. Karpen; Peter J. Park

Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which have an impact on cell differentiation, gene regulation and other key cellular processes. Here we present a genome-wide chromatin landscape for Drosophila melanogaster based on eighteen histone modifications, summarized by nine prevalent combinatorial patterns. Integrative analysis with other data (non-histone chromatin proteins, DNase I hypersensitivity, GRO-Seq reads produced by engaged polymerase, short/long RNA products) reveals discrete characteristics of chromosomes, genes, regulatory elements and other functional domains. We find that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions and genomic contexts. We also demonstrate a diversity of signatures among Polycomb targets that include a subset with paused polymerase. This systematic profiling and integrative analysis of chromatin signatures provides insights into how genomic elements are regulated, and will serve as a resource for future experimental investigations of genome structure and function.


Nature | 2014

Comparative analysis of metazoan chromatin organization

Joshua W. K. Ho; Youngsook L. Jung; Tao Liu; Burak H. Alver; Soohyun Lee; Kohta Ikegami; Kyung Ah Sohn; Aki Minoda; Michael Y. Tolstorukov; Alex Appert; Stephen C. J. Parker; Tingting Gu; Anshul Kundaje; Nicole C. Riddle; Eric P. Bishop; Thea A. Egelhofer; Sheng'En Shawn Hu; Artyom A. Alekseyenko; Andreas Rechtsteiner; Dalal Asker; Jason A. Belsky; Sarah K. Bowman; Q. Brent Chen; Ron Chen; Daniel S. Day; Yan Dong; Andréa C. Dosé; Xikun Duan; Charles B. Epstein; Sevinc Ercan

Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal ‘arms’, and centromeres distributed along their lengths. To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function.


Nature | 2011

X chromosome dosage compensation via enhanced transcriptional elongation in Drosophila

Erica Larschan; Eric P. Bishop; Peter V. Kharchenko; Leighton J. Core; John T. Lis; Peter J. Park; Mitzi I. Kuroda

The evolution of sex chromosomes has resulted in numerous species in which females inherit two X chromosomes but males have a single X, thus requiring dosage compensation. MSL (Male-specific lethal) complex increases transcription on the single X chromosome of Drosophila males to equalize expression of X-linked genes between the sexes. The biochemical mechanisms used for dosage compensation must function over a wide dynamic range of transcription levels and differential expression patterns. It has been proposed that the MSL complex regulates transcriptional elongation to control dosage compensation, a model subsequently supported by mapping of the MSL complex and MSL-dependent histone 4 lysine 16 acetylation to the bodies of X-linked genes in males, with a bias towards 3′ ends. However, experimental analysis of MSL function at the mechanistic level has been challenging owing to the small magnitude of the chromosome-wide effect and the lack of an in vitro system for biochemical analysis. Here we use global run-on sequencing (GRO-seq) to examine the specific effect of the MSL complex on RNA Polymerase II (RNAP II) on a genome-wide level. Results indicate that the MSL complex enhances transcription by facilitating the progression of RNAP II across the bodies of active X-linked genes. Improving transcriptional output downstream of typical gene-specific controls may explain how dosage compensation can be imposed on the diverse set of genes along an entire chromosome.


Nature Structural & Molecular Biology | 2009

Drosophila MSL complex globally acetylates H4K16 on the male X chromosome for dosage compensation

Marnie E. Gelbart; Erica Larschan; Shouyong Peng; Peter J. Park; Mitzi I. Kuroda

The Drosophila melanogaster male-specific lethal (MSL) complex binds the single male X chromosome to upregulate gene expression to equal that from the two female X chromosomes. However, it has been puzzling that ∼25% of transcribed genes on the X chromosome do not stably recruit MSL complex. Here we find that almost all active genes on the X chromosome are associated with robust H4 Lys16 acetylation (H4K16ac), the histone modification catalyzed by the MSL complex. The distribution of H4K16ac is much broader than that of the MSL complex, and our results favor the idea that chromosome-wide H4K16ac reflects transient association of the MSL complex, occurring through spreading or chromosomal looping. Our results parallel those of localized Polycomb repressive complex and its more broadly distributed chromatin mark, trimethylated histone H3 Lys27 (H3K27me3), suggesting a common principle for the establishment of active and silenced chromatin domains.


Molecular and Cellular Biology | 2005

The Saccharomyces cerevisiae Srb8-Srb11 Complex Functions with the SAGA Complex during Gal4-Activated Transcription

Erica Larschan; Fred Winston

ABSTRACT The Saccharomyces cerevisiae SAGA (Spt-Ada-Gcn5-acetyltransferase) complex functions as a coactivator during Gal4-activated transcription. A functional interaction between the SAGA component Spt3 and TATA-binding protein (TBP) is important for TBP binding at Gal4-activated promoters. To better understand the role of SAGA and other factors in Gal4-activated transcription, we selected for suppressors that bypass the requirement for SAGA. We obtained eight complementation groups and identified the genes corresponding to three of the groups as NHP10, HDA1, and SRB9. In contrast to the srb9 suppressor mutation that we identified, an srb9Δ mutation causes a strong defect in Gal4-activated transcription. Our studies have focused on this requirement for Srb9. Srb9 is part of the Srb8-Srb11 complex, associated with the Mediator coactivator. Srb8-Srb11 contains the Srb10 kinase, whose activity is important for GAL1 transcription. Our data suggest that Srb8-Srb11, including Srb10 kinase activity, is directly involved in Gal4 activation. By chromatin immunoprecipitation studies, Srb9 is present at the GAL1 promoter upon induction and facilitates the recruitment or stable association of TBP. Furthermore, the association of Srb9 with the GAL1 upstream activation sequence requires SAGA and specifically Spt3. Finally, Srb9 association also requires TBP. These results suggest that Srb8-Srb11 associates with the GAL1 promoter subsequent to SAGA binding, and that the binding of TBP and Srb8-Srb11 is interdependent.


Genes & Development | 2013

The CLAMP protein links the MSL complex to the X chromosome during Drosophila dosage compensation

Marcela M. Soruco; Jessica Chery; Eric P. Bishop; Trevor Siggers; Michael Y. Tolstorukov; Alexander R. Leydon; Arthur U. Sugden; Karen Goebel; Jessica Feng; Peng Xia; Anastasia Vedenko; Martha L. Bulyk; Peter J. Park; Erica Larschan

The Drosophila male-specific lethal (MSL) dosage compensation complex increases transcript levels on the single male X chromosome to equal the transcript levels in XX females. However, it is not known how the MSL complex is linked to its DNA recognition elements, the critical first step in dosage compensation. Here, we demonstrate that a previously uncharacterized zinc finger protein, CLAMP (chromatin-linked adaptor for MSL proteins), functions as the first link between the MSL complex and the X chromosome. CLAMP directly binds to the MSL complex DNA recognition elements and is required for the recruitment of the MSL complex. The discovery of CLAMP identifies a key factor required for the chromosome-specific targeting of dosage compensation, providing new insights into how subnuclear domains of coordinate gene regulation are formed within metazoan genomes.


Molecular and Cellular Biology | 2005

Evidence that the Elongation Factor TFIIS Plays a Role in Transcription Initiation at GAL1 in Saccharomyces cerevisiae

Donald Prather; Erica Larschan; Fred Winston

ABSTRACT TFIIS is a transcription elongation factor that has been extensively studied biochemically. Although the in vitro mechanisms by which TFIIS stimulates RNA transcript cleavage and polymerase read-through have been well characterized, its in vivo roles remain unclear. To better understand TFIIS function in vivo, we have examined its role during Gal4-mediated activation of the Saccharomyces cerevisiae GAL1 gene. Surprisingly, TFIIS is strongly associated with the GAL1 upstream activating sequence. In addition, TFIIS recruitment to Gal4-binding sites is dependent on Gal4, SAGA, and Mediator but not on RNA polymerase II (Pol II). The association of TFIIS is also necessary for the optimal recruitment of TATA-binding protein and Pol II to the GAL1 promoter. These results provide strong evidence that TFIIS plays an important role in the initiation of transcription at GAL1 in addition to its well-characterized roles in transcription elongation.


Nature Communications | 2016

MNase titration reveals differences between nucleosome occupancy and chromatin accessibility.

Jakub Mieczkowski; April Cook; Sarah K. Bowman; Britta Mueller; Burak H. Alver; Sharmistha Kundu; Aimée M. Deaton; Jennifer A. Urban; Erica Larschan; Peter J. Park; Robert E. Kingston; Michael Y. Tolstorukov

Chromatin accessibility plays a fundamental role in gene regulation. Nucleosome placement, usually measured by quantifying protection of DNA from enzymatic digestion, can regulate accessibility. We introduce a metric that uses micrococcal nuclease (MNase) digestion in a novel manner to measure chromatin accessibility by combining information from several digests of increasing depths. This metric, MACC (MNase accessibility), quantifies the inherent heterogeneity of nucleosome accessibility in which some nucleosomes are seen preferentially at high MNase and some at low MNase. MACC interrogates each genomic locus, measuring both nucleosome location and accessibility in the same assay. MACC can be performed either with or without a histone immunoprecipitation step, and thereby compares histone and non-histone protection. We find that changes in accessibility at enhancers, promoters and other regulatory regions do not correlate with changes in nucleosome occupancy. Moreover, high nucleosome occupancy does not necessarily preclude high accessibility, which reveals novel principles of chromatin regulation.


BMC Bioinformatics | 2007

Normalization and experimental design for ChIP-chip data

Shouyong Peng; Artem Anatolievich Alekseyenko; Erica Larschan; Mitzi I. Kuroda; Peter J. Park

BackgroundChromatin immunoprecipitation on tiling arrays (ChIP-chip) has been widely used to investigate the DNA binding sites for a variety of proteins on a genome-wide scale. However, several issues in the processing and analysis of ChIP-chip data have not been resolved fully, including the effect of background (mock control) subtraction and normalization within and across arrays.ResultsThe binding profiles of Drosophila male-specific lethal (MSL) complex on a tiling array provide a unique opportunity for investigating these topics, as it is known to bind on the X chromosome but not on the autosomes. These large bound and control regions on the same array allow clear evaluation of analytical methods.We introduce a novel normalization scheme specifically designed for ChIP-chip data from dual-channel arrays and demonstrate that this step is critical for correcting systematic dye-bias that may exist in the data. Subtraction of the mock (non-specific antibody or no antibody) control data is generally needed to eliminate the bias, but appropriate normalization obviates the need for mock experiments and increases the correlation among replicates. The idea underlying the normalization can be used subsequently to estimate the background noise level in each array for normalization across arrays. We demonstrate the effectiveness of the methods with the MSL complex binding data and other publicly available data.ConclusionProper normalization is essential for ChIP-chip experiments. The proposed normalization technique can correct systematic errors and compensate for the lack of mock control data, thus reducing the experimental cost and producing more accurate results.


PLOS Genetics | 2012

Sequence-specific targeting of dosage compensation in Drosophila favors an active chromatin context.

Artyom A. Alekseyenko; Joshua W. K. Ho; Shouyong Peng; Marnie E. Gelbart; Michael Y. Tolstorukov; Annette Plachetka; Peter V. Kharchenko; Youngsook L. Jung; Andrey A. Gorchakov; Erica Larschan; Tingting Gu; Aki Minoda; Nicole C. Riddle; Yuri B. Schwartz; Sarah C. R. Elgin; Gary H. Karpen; Vincenzo Pirrotta; Mitzi I. Kuroda; Peter J. Park

The Drosophila MSL complex mediates dosage compensation by increasing transcription of the single X chromosome in males approximately two-fold. This is accomplished through recognition of the X chromosome and subsequent acetylation of histone H4K16 on X-linked genes. Initial binding to the X is thought to occur at “entry sites” that contain a consensus sequence motif (“MSL recognition element” or MRE). However, this motif is only ∼2 fold enriched on X, and only a fraction of the motifs on X are initially targeted. Here we ask whether chromatin context could distinguish between utilized and non-utilized copies of the motif, by comparing their relative enrichment for histone modifications and chromosomal proteins mapped in the modENCODE project. Through a comparative analysis of the chromatin features in male S2 cells (which contain MSL complex) and female Kc cells (which lack the complex), we find that the presence of active chromatin modifications, together with an elevated local GC content in the surrounding sequences, has strong predictive value for functional MSL entry sites, independent of MSL binding. We tested these sites for function in Kc cells by RNAi knockdown of Sxl, resulting in induction of MSL complex. We show that ectopic MSL expression in Kc cells leads to H4K16 acetylation around these sites and a relative increase in X chromosome transcription. Collectively, our results support a model in which a pre-existing active chromatin environment, coincident with H3K36me3, contributes to MSL entry site selection. The consequences of MSL targeting of the male X chromosome include increase in nucleosome lability, enrichment for H4K16 acetylation and JIL-1 kinase, and depletion of linker histone H1 on active X-linked genes. Our analysis can serve as a model for identifying chromatin and local sequence features that may contribute to selection of functional protein binding sites in the genome.

Collaboration


Dive into the Erica Larschan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mitzi I. Kuroda

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shouyong Peng

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge