Erica Mica
Sant'Anna School of Advanced Studies
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erica Mica.
Nature | 2007
Olivier Jaillon; Jean-Marc Aury; Benjamin Noel; Alberto Policriti; Christian Clepet; Alberto Casagrande; Nathalie Choisne; Sébastien Aubourg; Nicola Vitulo; Claire Jubin; Alessandro Vezzi; Fabrice Legeai; Philippe Hugueney; Corinne Dasilva; David S. Horner; Erica Mica; Delphine Jublot; Julie Poulain; Clémence Bruyère; Alain Billault; Béatrice Segurens; Michel Gouyvenoux; Edgardo Ugarte; Federica Cattonaro; Véronique Anthouard; Virginie Vico; Cristian Del Fabbro; Michael Alaux; Gabriele Di Gaspero; Vincent Dumas
The analysis of the first plant genomes provided unexpected evidence for genome duplication events in species that had previously been considered as true diploids on the basis of their genetics. These polyploidization events may have had important consequences in plant evolution, in particular for species radiation and adaptation and for the modulation of functional capacities. Here we report a high-quality draft of the genome sequence of grapevine (Vitis vinifera) obtained from a highly homozygous genotype. The draft sequence of the grapevine genome is the fourth one produced so far for flowering plants, the second for a woody species and the first for a fruit crop (cultivated for both fruit and beverage). Grapevine was selected because of its important place in the cultural heritage of humanity beginning during the Neolithic period. Several large expansions of gene families with roles in aromatic features are observed. The grapevine genome has not undergone recent genome duplication, thus enabling the discovery of ancestral traits and features of the genetic organization of flowering plants. This analysis reveals the contribution of three ancestral genomes to the grapevine haploid content. This ancestral arrangement is common to many dicotyledonous plants but is absent from the genome of rice, which is a monocotyledon. Furthermore, we explain the chronology of previously described whole-genome duplication events in the evolution of flowering plants.
Nature Genetics | 2013
Ignazio Verde; A. G. Abbott; Simone Scalabrin; Sook Jung; Shengqiang Shu; Fabio Marroni; Tatyana Zhebentyayeva; Maria Teresa Dettori; Jane Grimwood; Federica Cattonaro; Andrea Zuccolo; Laura Rossini; Jerry Jenkins; Elisa Vendramin; Lee Meisel; Véronique Decroocq; Bryon Sosinski; Simon Prochnik; Therese Mitros; Alberto Policriti; Guido Cipriani; L. Dondini; Stephen P. Ficklin; David Goodstein; Pengfei Xuan; Cristian Del Fabbro; Valeria Aramini; Dario Copetti; Susana González; David S. Horner
Rosaceae is the most important fruit-producing clade, and its key commercially relevant genera (Fragaria, Rosa, Rubus and Prunus) show broadly diverse growth habits, fruit types and compact diploid genomes. Peach, a diploid Prunus species, is one of the best genetically characterized deciduous trees. Here we describe the high-quality genome sequence of peach obtained from a completely homozygous genotype. We obtained a complete chromosome-scale assembly using Sanger whole-genome shotgun methods. We predicted 27,852 protein-coding genes, as well as noncoding RNAs. We investigated the path of peach domestication through whole-genome resequencing of 14 Prunus accessions. The analyses suggest major genetic bottlenecks that have substantially shaped peach genome diversity. Furthermore, comparative analyses showed that peach has not undergone recent whole-genome duplication, and even though the ancestral triplicated blocks in peach are fragmentary compared to those in grape, all seven paleosets of paralogs from the putative paleoancestor are detectable.
BMC Genomics | 2009
Erica Mica; Viviana Piccolo; Massimo Delledonne; Alberto Ferrarini; Mario Pezzotti; Cesare Casati; Cristian Del Fabbro; Giorgio Valle; Alberto Policriti; Michele Morgante; M. Enrico Pè; David S. Horner
BackgroundMicroRNAs are short (~21 base) single stranded RNAs that, in plants, are generally coded by specific genes and cleaved specifically from hairpin precursors. MicroRNAs are critical for the regulation of multiple developmental, stress related and other physiological processes in plants. The recent annotation of the genome of the grapevine (Vitis vinifera L.) allowed the identification of many putative conserved microRNA precursors, grouped into multiple gene families.ResultsHere we use oligonucleotide arrays to provide the first indication that many of these microRNAs show differential expression patterns between tissues and during the maturation of fruit in the grapevine. Furthermore we demonstrate that whole transcriptome sequencing and deep-sequencing of small RNA fractions can be used both to identify which microRNA precursors are expressed in different tissues and to estimate genomic coordinates and patterns of splicing and alternative splicing for many primary miRNA transcripts.ConclusionOur results show that many microRNAs are differentially expressed in different tissues and during fruit maturation in the grapevine. Furthermore, the demonstration that whole transcriptome sequencing can be used to identify candidate splicing events and approximate primary microRNA transcript coordinates represents a significant step towards the large-scale elucidation of mechanisms regulating the expression of microRNAs at the transcriptional and post-transcriptional levels.
Molecular Plant | 2013
Edoardo Bertolini; Wim Verelst; David S. Horner; L. Gianfranceschi; Viviana Piccolo; Dirk Inzé; Mario Enrico Pè; Erica Mica
SUMMARY We investigated the role of known and newly discovered miRNAs in drought response and leaf development in Brachypodium distachyon. Differential expression analyses and miRNA-target predictions suggest evidence for regulatory networks controlling cell division and expansion in normal and stressed conditions.
BMC Genomics | 2015
Jayakumar Belli Kullan; Daniela Lopes Paim Pinto; Edoardo Bertolini; Marianna Fasoli; Sara Zenoni; Giovanni Battista Tornielli; Mario Pezzotti; Blake C. Meyers; Lorenzo Farina; Mario Enrico Pè; Erica Mica
BackgroundmiRNAs are the most abundant class of small non-coding RNAs, and they are involved in post-transcriptional regulations, playing a crucial role in the refinement of genetic programming during plant development. Here we present a comprehensive picture of miRNA regulation in Vitis vinifera L. plant during its complete life cycle. Furthering our knowledge about the post-transcriptional regulation of plant development is fundamental to understand the biology of such an important crop.ResultsWe analyzed 70 small RNA libraries, prepared from berries, inflorescences, tendrils, buds, carpels, stamens and other samples at different developmental stages. One-hundred and ten known and 175 novel miRNAs have been identified and a wide grapevine expression atlas has been described. The distribution of miRNA abundance reveals that 22 novel miRNAs are specific to stamen, and two of them are, interestingly, involved in ethylene biosynthesis, while only few miRNAs are highly specific to other organs. Thirty-eight miRNAs are present in all our samples, suggesting a role in key regulatory circuit. On the basis of miRNAs abundance and distribution across samples and on the estimated correlation, we suggest that miRNA expression define organ identity. We performed target prediction analysis and focused on miRNA expression analysis in berries and inflorescence during their development, providing an initial functional description of the identified miRNAs.ConclusionsOur findings represent a very extensive miRNA expression atlas in grapevine, allowing the definition of how the spatio-temporal distribution of miRNAs defines organ identity. We describe miRNAs abundance in specific tissues not previously described in grapevine and contribute to future targeted functional analyses. Finally, we present a deep characterization of miRNA involvement in berry and inflorescence development, suggesting a role for miRNA-driven hormonal regulation.
Functional & Integrative Genomics | 2017
Lorenzo Giusti; Erica Mica; Edoardo Bertolini; Anna Maria De Leonardis; Primetta Faccioli; Luigi Cattivelli; Cristina Crosatti
Plant stress response is a complex molecular process based on transcriptional and posttranscriptional regulation of many stress-related genes. microRNAs are the best-studied class of small RNAs known to play key regulatory roles in plant response to stress, besides being involved in plant development and organogenesis. We analyzed the leaf miRNAome of two durum wheat cultivars (Cappelli and Ofanto) characterized by a contrasting water use efficiency, exposed to heat stress, and mild and severe drought stress. On the whole, we identified 98 miRNA highly similar to previously known miRNAs and grouped in 47 MIR families, as well as 85 novel candidate miRNA, putatively wheat specific. A total of 80 known and novel miRNA precursors were found differentially expressed between the two cultivars or modulated by stress and many of them showed a cultivar-specific expression profile. Interestingly, most in silico predicted targets of the miRNAs coming from the differentially expressed precursors have been experimentally linked in other species to mechanisms controlling stomatal movement, a finding in agreement with previous results showing that Cappelli has a lower stomatal conductance than Ofanto. Selected miRNAs were validated through a standardized and reliable stem-loop qRT-PCR procedure.
Frontiers in Plant Science | 2016
Daniela Lopes Paim Pinto; Lucio Brancadoro; Silvia Dal Santo; Gabriella De Lorenzis; Mario Pezzotti; Blake C. Meyers; Mario Enrico Pè; Erica Mica
Understanding the molecular mechanisms involved in the interaction between the genetic composition and the environment is crucial for modern viticulture. We approached this issue by focusing on the small RNA transcriptome in grapevine berries of the two varieties Cabernet Sauvignon and Sangiovese, growing in adjacent vineyards in three different environments. Four different developmental stages were studied and a total of 48 libraries of small RNAs were produced and sequenced. Using a proximity-based pipeline, we determined the general landscape of small RNAs accumulation in grapevine berries. We also investigated the presence of known and novel miRNAs and analyzed their accumulation profile. The results showed that the distribution of small RNA-producing loci is variable between the two cultivars, and that the level of variation depends on the vineyard. Differently, the profile of miRNA accumulation mainly depends on the developmental stage. The vineyard in Riccione maximizes the differences between the varieties, promoting the production of more than 1000 specific small RNA loci and modulating their expression depending on the cultivar and the maturation stage. In total, 89 known vvi-miRNAs and 33 novel vvi-miRNA candidates were identified in our samples, many of them showing the accumulation profile modulated by at least one of the factors studied. The in silico prediction of miRNA targets suggests their involvement in berry development and in secondary metabolites accumulation such as anthocyanins and polyphenols.
Archive | 2018
Edoardo Bertolini; Mario Enrico Pè; Erica Mica
Plant sensing drought stress conditions activate complex molecular networks leading to a rapid reprogramming of plant physiology and metabolism, in order to survive in suboptimal conditions.Here, we describe a standardized in vivo soil drought assay to investigate the effects of drought stress on leaf growth. Since it is now clear that stress responses can be specific to developmental stages and cell types, we describe a procedure to dissect the leaf in three distinct areas in order to study transcriptional and posttranscriptional gene regulation on both organ and cellular levels. Noncoding RNAs, both small RNAs and long noncoding RNAs, are emerging to be deeply involved in abiotic stress responses, acting as molecular switches, interconnecting different response pathways. Here, we illustrate the methodology that has been used to identify miRNAs involved in drought response and to analyze the modulation of expression of their putative targets, in order to gain a complete picture of transcriptional and posttranscriptional regulation driven by noncoding RNAs.
Archive | 2010
Giorgia Batelli; Giorgio Gambino; Erica Mica; Andrea Schubert; Andrea Carra
Small non-coding RNAs are important regulatory elements able to cause endogenous gene silencing at both the transcriptional and post-transcriptional levels. Here we describe in detail the procedure of small RNAs extraction from grape tissues, which was developed as a modification of an RNA extraction method initially used for pine tree tissues. Polyacrylamide gel electrophoresis in denaturing conditions (obtained with high concentrations of urea) is used to efficiently separate small RNAs. In hybridization of small RNA northern blot, a single stranded DNA or LNA oligonucleotide in antisense orientation to the target small RNA is used as probe. The technique reported here was used for the isolation and expression analysis of small RNAs from grape berries at different stages of maturation and allowed the identification of several non-conserved miRNAs and siRNAs. Some major constraints of the procedure are discussed, including the comparably high amounts of tissues needed for the isolation of small RNAs, especially when berries are used as samples. Some recently developed methods to address these problems are briefly discussed, which are based on Real-Time (or quantitative) PCR.
Plant Journal | 2009
Andrea Carra; Erica Mica; Giorgio Gambino; Massimo Pindo; Claudio Moser; Mario Enrico Pè; Andrea Schubert