Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erick Mas is active.

Publication


Featured researches published by Erick Mas.


Natural Hazards | 2013

Building damage characteristics based on surveyed data and fragility curves of the 2011 Great East Japan tsunami

Anawat Suppasri; Erick Mas; Ingrid Charvet; Rashmin Gunasekera; Kentaro Imai; Yo Fukutani; Yoshi Abe; Fumihiko Imamura

A large amount of buildings was damaged or destroyed by the 2011 Great East Japan tsunami. Numerous field surveys were conducted in order to collect the tsunami inundation extents and building damage data in the affected areas. Therefore, this event provides us with one of the most complete data set among tsunami events in history. In this study, fragility functions are derived using data provided by the Ministry of Land, Infrastructure and Transportation of Japan, with more than 250,000 structures surveyed. The set of data has details on damage level, structural material, number of stories per building and location (town). This information is crucial to the understanding of the causes of building damage, as differences in structural characteristics and building location can be taken into account in the damage probability analysis. Using least squares regression, different sets of fragility curves are derived to demonstrate the influence of structural material, number of stories and coastal topography on building damage levels. The results show a better resistant performance of reinforced concrete and steel buildings over wood or masonry buildings. Also, buildings taller than two stories were confirmed to be much stronger than the buildings of one or two stories. The damage characteristic due to the coastal topography based on limited number of data in town locations is also shortly discussed here. At the same tsunami inundation depth, buildings along the Sanriku ria coast were much greater damaged than buildings from the plain coast in Sendai. The difference in damage states can be explained by the faster flow velocities in the ria coast at the same inundation depth. These findings are key to support better future building damage assessments, land use management and disaster planning.


Coastal Engineering Journal | 2012

DAMAGE CHARACTERISTIC AND FIELD SURVEY OF THE 2011 GREAT EAST JAPAN TSUNAMI IN MIYAGI PREFECTURE

Anawat Suppasri; Shunichi Koshimura; Kentaro Imai; Erick Mas; Hideomi Gokon; Abdul Muhari; Fumihiko Imamura

On March 11th, 2011, the Pacific coast of Japan was hit by a tsunami generated by the largest earthquake (M9.0) in the history of the country and causing a wide range of devastating damage. Using preliminary reported data from many sources, some topics such as tsunami fatality ratio and tsunami fragility curves for structural damage are discussed and compared with other countries. This paper aims to discuss the damage characteristics of this tsunami as well as its mechanism, as observed through field surveys conducted over the 4 months following the tsunami. The field survey covers 13 areas in the Miyagi prefecture from Kesennuma city in the northernmost region to Yamamoto town in the southernmost region. The arrival time of the first tsunami along the coastal areas in the Miyagi prefecture was confirmed by stopped clocks found during the survey. The damage mechanism of coastal structures such as breakwaters, seawalls, tsunami gates, and evacuation buildings was investigated and discussed. Damage characteristics for each area, i.e., urban areas, port, coastal structures, fisheries, and agricultural areas, were also summarized. The conclusions drawn from the data analysis suggest that experience and education (soft countermeasures) are important to reduce the loss of life, as shown for example in the Sanriku area. The field surveys indicate that wood and reinforced-concrete (RC) structures should be balanced to survive both earthquake and tsunami forces, and the structural design for buildings should be reconsidered after the example in Onagawa town. In addition, coastal structures for tsunami countermeasures (hard countermeasures) should be more properly designed for survival instead of becoming floating debris upon being overturned by a tsunami. The combination of both hard and soft measures is especially necessary for optimizing the outcomes following a great disaster. These recommendations should be taken into consideration in the reconstruction efforts for better tsunami countermeasures in the future.


Coastal Engineering Journal | 2012

DEVELOPING TSUNAMI FRAGILITY CURVES FROM THE SURVEYED DATA OF THE 2011 GREAT EAST JAPAN TSUNAMI IN SENDAI AND ISHINOMAKI PLAINS

Anawat Suppasri; Erick Mas; Shunichi Koshimura; Kentaro Imai; Kenji Harada; Fumihiko Imamura

Japan was hit by the tsunami generated by the greatest earthquake in the history of Japan. The authors conducted the post-tsunami field survey in Miyagi prefecture immediately after the event to measure the inundation depth and investigate damaged buildings. Most of the buildings surveyed were wooden houses and could be classified into 4 damage levels. The primary data of inundation depth and damage levels obtained from the field survey were used to create the tsunami fragility curves, which described the degree of structural damage as a function of the hydrodynamic characteristics of tsunami inundation. The developed fragility curves show that damage with more than a 50% chance of occurring is classified as minor damage, moderate damage, major damage and complete damage when the tsunami inundation depth is between 2.5-3.0 m, 3.0-4.0 m and 4.0-4.5 m and greater than 4.5 m, respectively. By comparing the developed tsunami fragility curves, wooden houses in the studied area have higher structural performance than those obtained from historical events in other areas. The new curves suggest that wooden houses will be severely damaged if the inundation depth is greater than 3 m and collapse if the depth is greater than 4 m while wooden houses from historical data can resist only 1–2 m. Moreover, wooden walls in Japan reduce the overall failure of a structural member because a wooden wall is easier to destroy (compared to brick walls in Thailand and Indonesia) and allows the tsunami to pass through, which reduces the pressure at the attacking front of the tsunami. The fragility curves are very important for the loss estimation and reconstruction plans of the city; they are also crucial for reducing the disaster damage from a future tsunami.


Pure and Applied Geophysics | 2015

Recent Advances in Agent-Based Tsunami Evacuation Simulations: Case Studies in Indonesia, Thailand, Japan and Peru

Erick Mas; Shunichi Koshimura; Fumihiko Imamura; Anawat Suppasri; Abdul Muhari; Bruno Adriano

As confirmed by the extreme tsunami events over the last decade (the 2004 Indian Ocean, 2010 Chile and 2011 Japan tsunami events), mitigation measures and effective evacuation planning are needed to reduce disaster risks. Modeling tsunami evacuations is an alternative means to analyze evacuation plans and possible scenarios of evacuees’ behaviors. In this paper, practical applications of an agent-based tsunami evacuation model are presented to demonstrate the contributions that agent-based modeling has added to tsunami evacuation simulations and tsunami mitigation efforts. A brief review of previous agent-based evacuation models in the literature is given to highlight recent progress in agent-based methods. Finally, challenges are noted for bridging gaps between geoscience and social science within the agent-based approach for modeling tsunami evacuations.


Pure and Applied Geophysics | 2015

A Decade After the 2004 Indian Ocean Tsunami: The Progress in Disaster Preparedness and Future Challenges in Indonesia, Sri Lanka, Thailand and the Maldives

Anawat Suppasri; Kazuhisa Goto; Abdul Muhari; Prasanthi Ranasinghe; Mahmood Riyaz; Muzailin Affan; Erick Mas; Mari Yasuda; Fumihiko Imamura

AbstractThe 2004 Indian Ocean tsunami was one of the most devastating tsunamis in world history. The tsunami caused damage to most of the Asian and other countries bordering the Indian Ocean. After a decade, reconstruction has been completed with different levels of tsunami countermeasures in most areas; however, some land use planning using probabilistic tsunami hazard maps and vulnerabilities should be addressed to prepare for future tsunamis. Examples of early-stage reconstruction are herein provided alongside a summary of some of the major tsunamis that have occurred since 2004, revealing the tsunami countermeasures established during the reconstruction period. Our primary objective is to report on and discuss the vulnerabilities found during our field visits to the tsunami-affected countries—namely, Indonesia, Sri Lanka, Thailand and the Maldives. For each country, future challenges based on current tsunami countermeasures, such as land use planning, warning systems, evacuation facilities, disaster education and disaster monuments are explained. The problem of traffic jams during tsunami evacuations, especially in well-known tourist areas, was found to be the most common problem faced by all of the countries. The readiness of tsunami warning systems differed across the countries studied. These systems are generally sufficient on a national level, but local hazards require greater study. Disaster reduction education that would help to maintain high tsunami awareness is well established in most countries. Some geological evidence is well preserved even after a decade. Conversely, the maintenance of monuments to the 2004 tsunami appears to be a serious problem. Finally, the reconstruction progress was evaluated based on the experiences of disaster reconstruction in Japan. All vulnerabilities discussed here should be addressed to create long-term, disaster-resilient communities.


Coastal Engineering Journal | 2016

Understanding the Extreme Tsunami Inundation in Onagawa Town by the 2011 Tohoku Earthquake, Its Effects in Urban Structures and Coastal Facilities

Bruno Adriano; Satomi Hayashi; Hideomi Gokon; Erick Mas; Shunichi Koshimura

The 2011 Tohoku Tsunami is considered to be one of the most tragic events in Japans disaster history, and represents an important milestone for the research community regarding the investigation of the characteristics of tsunami inundation. A thorough analysis of tsunami inundation was conducted using numerical modeling, and measurements from a video recorded from the rooftop of a building in Onagawa in Miyagi Prefecture. In this study, we analyze the destruction of buildings using numerical simulations and tsunami fragility functions. Numerical results for the locations at which the tsunami eyewitness video was recorded are compared with measurements. In addition, we considered the effect of the breakwater in Onagawa bay to evaluate its contribution to reducing overland tsunami inundation depths. The results of our simulations show that the maximum inundation depth due to the first incoming wave was over 16 m, and over 500 buildings were washed away with this first wave. This result is consistent with the video data. Further, we found that the breakwater, which was not originally designed against tsunami waves, reduced the maximum tsunami inundation depth at least by 2.0 m in Onagawa town.


international geoscience and remote sensing symposium | 2014

Extraction of damaged areas due to the 2013 Haiyan Typhoon using ASTER data

Bruno Adriano; Hideomi Gokon; Erick Mas; Shunichi Koshimura; Wen Liu; Masashi Matsuoka

In this study, the extent of the flooded areas by the Super Typhoon Haiyan in the Philippines were extracted using ASTER VNIR images taken over Tacloban city in the Visayas. In order to constraint the affected area, we employed the normalize difference vegetation and water indices (NDVI and NDWI) from the pre- and post-event images. The extension of the flooded area was determined by comparing the index characteristics before and after the event. A phase-based change detection method indices was applied to classify the affected area into three classes according to the changes between the pre- and post-images. Through NDWI the flooded areas were detected despite the moderate resolution of ASTER images. In addition, the phase-based analysis successfully detected level of change within the affected area that may be correlated to the damage observed on field surveys. The results from the phase-based analysis were verified with damage levels obtained through visual damage inspection using high resolution satellite images.


IEEE Geoscience and Remote Sensing Letters | 2018

A Framework of Rapid Regional Tsunami Damage Recognition From Post-event TerraSAR-X Imagery Using Deep Neural Networks

Yanbing Bai; Chang Gao; Sameer Singh; Magaly Koch; Bruno Adriano; Erick Mas; Shunichi Koshimura

Near real-time building damage mapping is an indispensable prerequisite for governments to make decisions for disaster relief. With high-resolution synthetic aperture radar (SAR) systems, such as TerraSAR-X, the provision of such products in a fast and effective way becomes possible. In this letter, a deep learning-based framework for rapid regional tsunami damage recognition using post-event SAR imagery is proposed. To perform such a rapid damage mapping, a series of tile-based image split analysis is employed to generate the data set. Next, a selection algorithm with the SqueezeNet network is developed to swiftly distinguish between built-up (BU) and nonbuilt-up regions. Finally, a recognition algorithm with a modified wide residual network is developed to classify the BU regions into wash away, collapsed, and slightly damaged regions. Experiments performed on the TerraSAR-X data from the 2011 Tohoku earthquake and tsunami in Japan show a BU region extraction accuracy of 80.4% and a damage-level recognition accuracy of 74.8%, respectively. Our framework takes around 2 h to train on a new region, and only several minutes for prediction.


Archive | 2015

Reconstruction Process and Social Issues After the 1746 Earthquake and Tsunami in Peru: Past and Present Challenges After Tsunami Events

Erick Mas; Bruno Adriano; Julio Kuroiwa Horiuchi; Shunichi Koshimura

Tsunamis, oceanic wave events that are most often triggered by earthquakes at interplate subduction areas, result in damaged infrastructure, ecological disruption and a substantial number of deaths among coastal communities. In recent years, a key concept in the assessment of tsunami events has been resilience, which can be understood as the ability of a group to anticipate risk, limit negative impacts and recover rapidly from a catastrophic event through processes of survival, adaptability, evolution and growth. The term resilience incorporates a dynamic and durable connotation of constant preparedness, not only for the next tsunami event but also for the ensuing process of reconstruction. The reconstruction of a community devastated by a tsunami poses a multiplicity of challenges, including environmental, social, political, scientific, engineering and architectural challenges. In this paper, we first examine a 1746 tsunami event (Mw9.0) that occurred on the coast of Viceroyalty-era Peru and consider the challenges reported during the subsequent reconstruction of a devastated city and port. We contrast those challenges, reported nearly 250 years ago, with analogous challenges observed in more recent tsunami events. The paper concludes with comments on the lessons learned and suggests areas of future research.


Archive | 2014

Damage and Reconstruction After the 2004 Indian Ocean Tsunami and the 2011 Tohoku Tsunami

Anawat Suppasri; Abdul Muhari; Prasanthi Ranasinghe; Erick Mas; Fumihiko Imamura; Shunichi Koshimura

The 2004 Indian Ocean tsunami was one of the world’s worst tsunamis and caused devastating damage in many Asian countries. Then, in 2011, Japan was hit by a tsunami that was generated by the greatest earthquake in the country’s history. This paper discusses the damage caused by these tsunamis and subsequent reconstruction. Introduced first are the experience gained and lessons learned for future tsunami mitigation, such as tsunami awareness, proper evacuation building and the memorial parks created in the countries affected by the 2004 tsunami (Indonesia, Sri Lanka and Thailand). Second, human casualties and building damage are discussed using fatality ratios and fragility curves, respectively. These analyses show that experience and awareness help reduce human casualties in the Sanriku area, and wooden houses damaged by the 2011 tsunami fared better than in previous historical events. The damage by the 2011 tsunami to structures designed to protect against tsunamis is summarized. Most of these structures could not withstand and protect from the tsunami because they were not designed for such a large tsunami as expecting of such great event. Finally, examples of ongoing reconstruction in Japan are introduced. Most reconstruction efforts were planned after considering the lessons learned from the tsunami’s impact, and the towns in question are now strengthening their disaster prevention-related plans to be better prepared for future tsunamis.

Collaboration


Dive into the Erick Mas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

César Jiménez

National University of San Marcos

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masashi Matsuoka

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge