Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erick T. Young is active.

Publication


Featured researches published by Erick T. Young.


Astrophysical Journal Supplement Series | 2004

The Spitzer Space Telescope Mission

M. Werner; Thomas L. Roellig; Frank J. Low; G. H. Rieke; Marcia J. Rieke; William F. Hoffmann; Erick T. Young; J. R. Houck; Bernhard R. Brandl; Giovanni G. Fazio; Joseph L. Hora; Robert D. Gehrz; George Helou; B. T. Soifer; John R. Stauffer; Jocelyn Keene; Peter R. M. Eisenhardt; D.B Gallagher; Thomas N. Gautier; William R. Irace; C. R. Lawrence; L. Simmons; J. Van Cleve; Michael Jura; Edward L. Wright; Dale P. Cruikshank

The Spitzer Space Telescope, NASAs Great Observatory for infrared astronomy, was launched 2003 August 25 and is returning excellent scientific data from its Earth-trailing solar orbit. Spitzer combines the intrinsic sensitivity achievable with a cryogenic telescope in space with the great imaging and spectroscopic power of modern detector arrays to provide the user community with huge gains in capability for exploration of the cosmos in the infrared. The observatory systems are largely performing as expected, and the projected cryogenic lifetime is in excess of 5 years. This paper summarizes the on-orbit scientific, technical, and operational performance of Spitzer. Subsequent papers in this special issue describe the Spitzer instruments in detail and highlight many of the exciting scientific results obtained during the first 6 months of the Spitzer mission.


Astrophysical Journal Supplement Series | 2004

THE MULTIBAND IMAGING PHOTOMETER FOR SPITZER (MIPS)

G. H. Rieke; Erick T. Young; C. W. Engelbracht; D. M. Kelly; Frank J. Low; E. E. Haller; Jeffrey W. Beeman; Karl D. Gordon; J. A. Stansberry; Karl Anthony Misselt; James Cadien; J. E. Morrison; Gil Rivlis; William B. Latter; Alberto Noriega-Crespo; Deborah Lynne Padgett; Karl R. Stapelfeldt; Dean C. Hines; E. Egami; James Muzerolle; A. Alonso-Herrero; M. Blaylock; H. Dole; Joannah L. Hinz; Casey Papovich; P. G. Pérez-González; Paul S. Smith; K. Y. L. Su; Lee Bennett; D. T. Frayer

The Multiband Imaging Photometer for Spitzer (MIPS) provides long-wavelength capability for the mission in imaging bands at 24, 70, and 160 ?m and measurements of spectral energy distributions between 52 and 100 ?m at a spectral resolution of about 7%. By using true detector arrays in each band, it provides both critical sampling of the Spitzer point-spread function and relatively large imaging fields of view, allowing for substantial advances in sensitivity, angular resolution, and efficiency of areal coverage compared with previous space far-infrared capabilities. The 24 ?m array has excellent photometric properties, and measurements with rms relative errors of about 1% can be obtained. The two longer-wavelength arrays use detectors with poor photometric stability, but a system of onboard stimulators used for relative calibration, combined with a unique data pipeline, produce good photometry with rms relative errors of less than 10%.


The Astrophysical Journal | 1984

THE INFRARED ASTRONOMICAL SATELLITE (IRAS) MISSION

G. Neugebauer; H. J. Habing; Rj Vanduinen; Hh Aumann; B. Baud; C. A. Beichman; Da Beintema; N Boggess; P.E. Clegg; T Dejong; Jp Emerson; T. N. Gautier; Fc Gillett; S Harris; M. G. Hauser; [No Value] Houck; Re Jennings; F. J. Low; Pl Marsden; G.K. Miley; Fm Olnon; [No Value] Pottasch; E Raimond; Michael Rowan-Robinson; B. T. Soifer; Rg Walker; Pr Wesselius; Erick T. Young

The Infrared Astronomical Satellite (IRAS) consists of a spacecraft and a liquid helium cryostat that contains a cooled IR telescope. The telescopes focal plane assembly is cooled to less than 3 K, and contains 62 IR detectors in the survey array which are arranged so that every source crossing the field of view can be seen by at least two detectors in each of four wavelength bands. The satellite was launched into a 900 km-altitude near-polar orbit, and its cryogenic helium supply was exhausted on November 22, 1983. By missions end, 72 percent of the sky had been observed with three or more hours-confirming scans, and 95 percent with two or more hours-confirming scans. About 2000 stars detected at 12 and 25 microns early in the mission, and identified in the SAO (1966) catalog, have a positional uncertainty ellipse whose axes are 45 x 9 arcsec for an hours-confirmed source.


The Astrophysical Journal | 2005

Decay of Planetary Debris Disks

G. H. Rieke; Kyl Su; J. A. Stansberry; David E. Trilling; G. Bryden; James Muzerolle; Brooke A. White; Nadiya Gorlova; Erick T. Young; C. A. Beichman; Karl R. Stapelfeldt; Dean C. Hines

We report new Spitzer 24 � m photometry of 76 main-sequence A-type stars. We combine these results with previously reportedSpitzer24 � m data and 24 and 25 � m photometry from theInfrared Space Observatoryand the InfraredAstronomySatellite.Theresultisasampleof266starswithmasscloseto2.5M� ,alldetectedtoatleastthe � 7 � level relative to their photospheric emission. We culled ages for the entire sample from the literature and/or estimated them using the H-R diagram and isochrones; they range from 5 to 850 Myr. We identified excess thermal emission using an internally derived K � 24 (or 25) � m photospheric color and then compared all stars in the sample tothatcolor.Becausewehaveexcludedstarswithstrongemissionlinesorextendedemission(associatedwithnearby interstellar gas), these excesses are likely to be generated by debris disks. Younger stars in the sample exhibit excess thermal emissionmore frequently andwithhigher fractional excess thandothe olderstars. However,asmanyas 50% oftheyoungerstarsdonotshowexcessemission.Thedeclineinthemagnitudeofexcessemission,forthosestarsthat show it, has a roughly t0/time dependence, with t0 � 150 Myr. If anything, stars in binary systems (including Algoltype stars) and k Boo stars show less excess emission than the other members of the sample. Our results indicate that (1) there is substantial variety among debris disks, including that a significant number of stars emerge from the protoplanetary stage of evolution with little remaining disk in the 10‐60 AU region and (2) in addition, it is likely that much of the dust we detect is generated episodically by collisions of large planetesimals during the planet accretion endgame,andthatindividualeventsoftendominatetheradiometricpropertiesofadebrissystem.Thislatterbehavior agrees generally withwhat weknowabouttheevolution of thesolar system, andalsowiththeoretical models ofplanetary system formation. Subject headingg circumstellar matter — infrared: stars — planetary systems: formation Online material: machine-readable table


The Astrophysical Journal | 1984

Infrared cirrus - New components of the extended infrared emission

F. J. Low; Da Beintema; T. N. Gautier; Fc Gillett; C. A. Beichman; G. Neugebauer; Erick T. Young; Hh Aumann; N Boggess; Jp Emerson; H. J. Habing; M. G. Hauser; [No Value] Houck; Michael Rowan-Robinson; B. T. Soifer; Rg Walker; Pr Wesselius

Extended sources of far-infrared emission superposed on the zodiacal and galactic backgrounds are found at high galactic latitudes and near the ecliptic plane. Clouds of interstellar dust at color temperatures as high as 35 K account for much of this complex structure, but the relationship to H I column density is not simple. Other features of the extended emission show the existence of warm structures within the solar system. Three bands of dust clouds at temperatures of 150-200 K appear within 10 deg on both sides of the ecliptic plane. Their ecliptic latitudes and derived distances suggest that they are associated with the main asteroid belt. A third component of the 100-micron cirrus, poorly correlated with H I, may represent cold material in the outer solar system or a new component of the interstellar medium.


Publications of the Astronomical Society of the Pacific | 2007

Absolute Calibration and Characterization of the Multiband Imaging Photometer for Spitzer. I. The Stellar Calibrator Sample and the 24 μm Calibration

C. W. Engelbracht; M. Blaylock; K. Y. L. Su; Jeonghee Rho; G. H. Rieke; James Muzerolle; Deborah Lynne Padgett; Dean C. Hines; Karl D. Gordon; D. Fadda; Alberto Noriega-Crespo; D. M. Kelly; William B. Latter; Joannah L. Hinz; Karl Anthony Misselt; J. E. Morrison; J. A. Stansberry; D. L. Shupe; Susan Renee Stolovy; Wm. A. Wheaton; Erick T. Young; G. Neugebauer; Stefanie Wachter; P. G. Pérez-González; D. T. Frayer; Francine Roxanne Marleau

We present the stellar calibrator sample and the conversion from instrumental to physical units for the 24 μm channel of the Multiband Imaging Photometer for Spitzer (MIPS). The primary calibrators are A stars, and the calibration factor based on those stars is MJy sr^−1 (DN s^−1)^−1, with a nominal uncertainty of 2%. We discuss the data reduction procedures required to attain this accuracy; without these procedures, the calibration factor obtained using the automated pipeline at the Spitzer Science Center is lower. We extend this work to predict 24 μm flux densities for a sample of 238 stars that covers a larger range of flux densities and spectral types. We present a total of 348 measurements of 141 stars at 24 μm. This sample covers a factor of 460 in 24 μm flux density, from 8.6 mJy up to 4.0 Jy. We show that the calibration is linear over that range with respect to target flux and background level. The calibration is based on observations made using 3 s exposures; a preliminary analysis shows that the calibration factor may be 1% and 2% lower for 10 and 30 s exposures, respectively. We also demonstrate that the calibration is very stable: over the course of the mission, repeated measurements of our routine calibrator, HD 159330, show a rms scatter of only 0.4%. Finally, we show that the point-spread function (PSF) is well measured and allows us to calibrate extended sources accurately; Infrared Astronomy Satellite (IRAS) and MIPS measurements of a sample of nearby galaxies are identical within the uncertainties.


The Astronomical Journal | 2006

SPITZER OBSERVATIONS OF IC 348: THE DISK POPULATION AT 2-3 MILLION YEARS

Charles J. Lada; August Albert Muench; K. L. Luhman; Lori E. Allen; Lee Hartmann; Tom Megeath; Philip C. Myers; Giovanni G. Fazio; Kenneth Wood; James Muzerolle; G. H. Rieke; Nick Siegler; Erick T. Young

We present near- and mid-infrared photometry obtained with the Spitzer Space Telescope of ~300 known members of the IC 348 cluster. We merge this photometry with existing ground-based optical and near-infrared photometry in order to construct optical-infrared spectral energy distributions (SEDs) for all the cluster members and present a complete atlas of these SEDs. We employ these observations to investigate both the frequency and nature of the circumstellar disk population in the cluster. The Spitzer observations span a wavelength range between 3.6 and 24 μm, corresponding to disk radii of ~0.1-5 AU from the central star. The observations are sufficiently sensitive to enable the first detailed measurement of the disk frequency for very low mass stars at the peak of the stellar initial mass function. Using measurements of infrared excess between 3.6 and 8.0 μm, we find the total frequency of disk-bearing stars in the cluster to be 50% ± 6%. However, only 30% ± 4% of the member stars are surrounded by optically thick, primordial disks, while the remaining disk-bearing stars are surrounded by what appear to be optically thin, anemic disks. Both these values are below previous estimates for this cluster. The disk fraction appears to be a function of spectral type and stellar mass. The fraction of stars with optically thick disks ranges from 11% ± 8% for stars earlier than K6 to 47% ± 12% for K6-M2 stars to 28% ± 5% for M2-M6 stars. The disk longevity and thus conditions for planet formation appear to be most favorable for the K6-M2 stars, which are objects of comparable mass to the Sun for the age of this cluster. The optically thick disks around later type (>M4) stars appear to be less flared than the disks around earlier type stars. This may indicate a greater degree of dust settling and a more advanced evolutionary state for the late M disk population. Finally, we find that the presence of an optically thick dust disk is correlated with gaseous accretion, as measured by the strength of Hα emission. A large fraction of stars classified as classical T Tauri stars possess robust, optically thick disks, and very few such stars are found to be diskless. The majority (64%) of stars classified as weak-lined T Tauri stars are found to be diskless. However, a significant fraction (12%) of these stars are found to be surrounded by thick, primordial disks. These results suggest that it is more likely for dust disks to persist in the absence of active gaseous accretion than for active accretion to persist in the absence of dusty disks.


Astrophysical Journal Supplement Series | 2004

The 24 Micron Source Counts in Deep Spitzer Space Telescope Surveys

Casey Papovich; H. Dole; E. Egami; P. G. Pérez-González; A. Alonso-Herrero; Lei Bai; Charles A. Beichman; M. Blaylock; C. W. Engelbracht; Karl D. Gordon; Dean C. Hines; Karl Anthony Misselt; J. E. Morrison; Jeremy R. Mould; James Muzerolle; G. Neugebauer; P. L. Richards; G. H. Rieke; Marcia J. Rieke; Jane R. Rigby; Kate Su; Erick T. Young

Galaxy source counts in the infrared provide strong constraints on the evolution of the bolometric energy output from distant galaxy populations. We present the results from deep 24 μm imaging from Spitzer surveys, which include ≈5 × 10^4 sources to an 80% completeness of ≃ 60 μJy. The 24 μm counts rapidly rise at near-Euclidean rates down to 5 mJy, increase with a super-Euclidean rate between 0.4 and 4 mJy, and converge below ~0.3 mJy. The 24 μm counts exceed expectations from nonevolving models by a factor of ≳10 at S_ν ~ 0.1 mJy. The peak in the differential number counts corresponds to a population of faint sources that is not expected from predictions based on 15 μm counts from the Infrared Space Observatory. We argue that this implies the existence of a previously undetected population of infrared-luminous galaxies at z ~ 1-3. Integrating the counts to 60 μJy, we derive a lower limit on the 24 μm background intensity of 1.9 ± 0.6 nW m^(-2) sr^(-1) of which the majority (~60%) stems from sources fainter than 0.4 mJy. Extrapolating to fainter flux densities, sources below 60 μJy contribute 0.8^(+0.9)_(-0.4) nW m^(-2) sr^(-1) to the background, which provides an estimate of the total 24 μm background of 2.7^(+1.1)_(-0.7) nW m^(-2) sr^(-1).


The Astrophysical Journal | 2006

Disk Evolution in Cep OB2: Results from the Spitzer Space Telescope

Aurora Sicilia-Aguilar; Lee Hartmann; Nuria Calvet; S. T. Megeath; James Muzerolle; Lori E. Allen; Paola D’Alessio; Bruno Merín; John R. Stauffer; Erick T. Young; Charles J. Lada

We present the results of an infrared imaging survey of two clusters in the Cep OB2 Association, Tr 37 and NGC 7160, using the IRAC and MIPS instruments on board the Spitzer Space Telescope. Our observations cover the wavelengthrangefrom3.6to24 � m,allowingustodetectdiskemissionoveratypicalrangeofradii � 0.1to � 20AU from the central star. In Tr 37, with an age of about 4 Myr, about 48% of the low-mass stars exhibit detectable disk emission in the IRAC bands. Roughly 10% of the stars with disks may be ‘‘transition’’ objects, with essentially photospheric fluxes at wavelengths � 4.5 � m but with excesses at longer wavelengths, indicating an optically thin inner disk. The median optically thick disk emission in Tr 37 is lower than the corresponding median for stars in the youngerTaurusregion;thedecreaseininfraredexcessislargerat6–8 � mthanat24 � m,suggestingthatgraingrowth and/or dust settling has proceeded faster at smaller disk radii, as expected on general theoretical grounds. Only about 4% of the low-mass stars in the 10 Myr old cluster NGC 7160 show detectable infrared disk emission. We also find evidence for 24 � m excesses around a few intermediate-mass stars, which may represent so-called ‘‘debris disk’’ systems. Our observations provide new constraints on disk evolution through an important age range. Subject headingg accretion, accretion disks — planetary systems: protoplanetary disks — stars: pre–main-sequence


Publications of the Astronomical Society of the Pacific | 2007

Absolute calibration and characterization of the multiband imaging photometer for Spitzer. II. 70 μm imaging

Karl D. Gordon; C. W. Engelbracht; D. Fadda; J. A. Stansberry; Stefanie Wachter; D. T. Frayer; G. H. Rieke; Alberto Noriega-Crespo; William B. Latter; Erick T. Young; G. Neugebauer; Zoltan Balog; Jeffrey W. Beeman; H. Dole; E. Egami; E. E. Haller; Dean C. Hines; D. M. Kelly; Francine Roxanne Marleau; Karl Anthony Misselt; J. E. Morrison; P. G. Pérez-González; Jeonghee Rho; Wm. A. Wheaton

The absolute calibration and characterization of the Multiband Imaging Photometer for Spitzer (MIPS) 70 μm coarse‐and fine‐scale imaging modes are presented based on over 2.5 yr of observations. Accurate photometry (especially for faint sources) requires two simple processing steps beyond the standard data reduction to remove long‐term detector transients. Point‐spread function (PSF) fitting photometry is found to give more accurate flux densities than aperture photometry. Based on the PSF fitting photometry, the calibration factor shows no strong trend with flux density, background, spectral type, exposure time, or time since anneals. The coarse‐scale calibration sample includes observations of stars with flux densities from 22 mJy to 17 Jy, on backgrounds from 4 to 26 MJy sr^(−1), and with spectral types from B to M. The coarse‐scale calibration is 702 ± 35 MJy sr^(−1) MIPS70^(−1) (5% uncertainty) and is based on measurements of 66 stars. The instrumental units of the MIPS 70 μm coarse‐ and fine‐scale imaging modes are called MIPS70 and MIPS70F, respectively. The photometric repeatability is calculated to be 4.5% from two stars measured during every MIPS campaign and includes variations on all timescales probed. The preliminary fine‐scale calibration factor is 2894 ± 294 MJy sr^(−1) MIPS70F^(−1) (10% uncertainty) based on 10 stars. The uncertainties in the coarse‐ and fine‐scale calibration factors are dominated by the 4.5% photometric repeatability and the small sample size, respectively. The 5 σ, 500 s sensitivity of the coarse‐scale observations is 6–8 mJy. This work shows that the MIPS 70 μm array produces accurate, well‐calibrated photometry and validates the MIPS 70 μm operating strategy, especially the use of frequent stimulator flashes to track the changing responsivities of the Ge:Ga detectors.

Collaboration


Dive into the Erick T. Young's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Muzerolle

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dean C. Hines

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

Karl D. Gordon

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald N. B. Hall

University of Hawaii at Hilo

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge