Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik de Vrieze is active.

Publication


Featured researches published by Erik de Vrieze.


Endocrinology | 2011

Identification and Functional Characterization of Zebrafish Solute Carrier Slc16a2 (Mct8) as a Thyroid Hormone Membrane Transporter

Francisco J. Arjona; Erik de Vrieze; Theo J. Visser; Gert Flik; Peter H.M. Klaren

Most components of the thyroid system in bony fish have been described and characterized, with the notable exception of thyroid hormone membrane transporters. We have cloned, sequenced, and expressed the zebrafish solute carrier Slc16a2 (also named monocarboxylate transporter Mct8) cDNA and established its role as a thyroid hormone transport protein. The cloned cDNA shares 56-57% homology with its mammalian orthologs. The 526-amino-acid sequence contains 12 predicted transmembrane domains. An intracellular N-terminal PEST domain, thought to be involved in proteolytic processing of the protein, is present in the zebrafish sequence. Measured at initial rate and at the body/rearing temperature of zebrafish (26 C), T(3) uptake by zebrafish Slc16a2 is a saturable process with a calculated Michaelis-Menten constant of 0.8 μM T(3). The rate of T(3) uptake is temperature dependent and Na(+) independent. Interestingly, at 26 C, zebrafish Slc16a2 does not transport T(4). This implies that at a normal body temperature in zebrafish, Slc16a2 protein is predominantly involved in T(3) uptake. When measured at 37 C, zebrafish Slc16a2 transports T(4) in a Na(+)-independent manner. In adult zebrafish, the Slc16a2 gene is highly expressed in brain, gills, pancreas, liver, pituitary, heart, kidney, and gut. Beginning from the midblastula stage, Slc16a2 is also expressed during zebrafish early development, the highest expression levels occurring 48 h after fertilization. This is the first direct evidence for thyroid hormone membrane transporters in fish. We suggest that Slc16a2 plays a key role in the local availability of T(3) in adult tissues as well as during the completion of morphogenesis of primary organ systems.


Bone | 2011

Matrix metalloproteinases in osteoclasts of ontogenetic and regenerating zebrafish scales

Erik de Vrieze; Faiza Sharif; Juriaan R. Metz; Gert Flik; Michael K. Richardson

Matrix metalloproteinases (MMPs) are key enzymes in the turnover of extracellular matrix in health, disease, development and regeneration. We have studied zebrafish scale regeneration to ascertain the role of MMP-2 and MMP-9 in these processes. Scales were plucked from the surface of anaesthetised adult male zebrafish, and the scales that regenerated in the scale pocket were recovered at various time points after plucking. Analyses consisted of (i) mmp-9 in situ hybridisation; (ii) MMP-9+TRAcP double-staining; (iii) qRT-PCR for mmp-2 and mmp-9; (iv) zymography for gelatinolytic activity and (v) a hydroxyproline assay. We found that mmp-9 positive cells were confined to the episquamal side of the scales. Ontogenetic scales had irregular clusters of mono- and multinucleated mmp-9 expressing cells along their lateral margins and radii. During regeneration, mmp-9 positive cells were seen on the scale plate, but not along the lateral margins. Double staining for TRAcP and MMP-9 revealed the osteoclastic nature of these cells. During early scale regeneration, mmp-2 and mmp-9 transcripts increased in abundance in the scale, enzymatic MMP activity increased and collagen degradation was detected by means of hydroxyproline measurements. Near the end of regeneration, all of these parameters returned to the basal values seen in ontogenetic scales. These findings suggest that MMPs play an important role in remodelling of the scale plate during regeneration, and that this function resides in mononucleated and multinucleated osteoclasts which co-express TRAcP and mmp-9. Our findings suggest that the fish scale regeneration model may be a useful system in which to study the cells and mechanisms responsible for regeneration, development and skeletal remodelling.


American Journal of Human Genetics | 2014

Disruption of the Basal Body Protein POC1B Results in Autosomal-Recessive Cone-Rod Dystrophy

Susanne Roosing; Ideke J.C. Lamers; Erik de Vrieze; L. Ingeborgh van den Born; Stanley Lambertus; Heleen H. Arts; Karsten Boldt; Elfride De Baere; Caroline C. W. Klaver; Frauke Coppieters; David A. Koolen; Dorien Lugtenberg; Kornelia Neveling; Jeroen van Reeuwijk; Marius Ueffing; Sylvia E. C. van Beersum; Marijke N. Zonneveld-Vrieling; Theo A. Peters; Carel B. Hoyng; Hannie Kremer; Lisette Hetterschijt; Stef J.F. Letteboer; Erwin van Wijk; Ronald Roepman; Anneke I. den Hollander; Frans P.M. Cremers

Exome sequencing revealed a homozygous missense mutation (c.317C>G [p.Arg106Pro]) in POC1B, encoding POC1 centriolar protein B, in three siblings with autosomal-recessive cone dystrophy or cone-rod dystrophy and compound-heterozygous POC1B mutations (c.199_201del [p.Gln67del] and c.810+1G>T) in an unrelated person with cone-rod dystrophy. Upon overexpression of POC1B in human TERT-immortalized retinal pigment epithelium 1 cells, the encoded wild-type protein localized to the basal body of the primary cilium, whereas this localization was lost for p.Arg106Pro and p.Gln67del variant forms of POC1B. Morpholino-oligonucleotide-induced knockdown of poc1b translation in zebrafish resulted in a dose-dependent small-eye phenotype, impaired optokinetic responses, and decreased length of photoreceptor outer segments. These ocular phenotypes could partially be rescued by wild-type human POC1B mRNA, but not by c.199_201del and c.317C>G mutant human POC1B mRNAs. Yeast two-hybrid screening of a human retinal cDNA library revealed FAM161A as a binary interaction partner of POC1B. This was confirmed in coimmunoprecipitation and colocalization assays, which both showed loss of FAM161A interaction with p.Arg106Pro and p.Gln67del variant forms of POC1B. FAM161A was previously implicated in autosomal-recessive retinitis pigmentosa and shown to be located at the base of the photoreceptor connecting cilium, where it interacts with several other ciliopathy-associated proteins. Altogether, this study demonstrates that POC1B mutations result in a defect of the photoreceptor sensory cilium and thus affect cone and rod photoreceptors.


Journal of Endocrinology | 2011

STAT genes display differential evolutionary rates that correlate with their roles in the endocrine and immune system

Marnix Gorissen; Erik de Vrieze; Gert Flik; Mark O. Huising

We identified orthologues of all mammalian Janus kinase (JAK) and signal transducer and activator of transcription (STAT) genes in teleostean fishes, indicating that these protein families were already largely complete before the teleost tetrapod split, 450 million years ago. In mammals, the STAT repertoire consists of seven genes (STAT1, -2, -3, -4, -5a, -5b, and -6). Our phylogenetic analyses show that STAT proteins that are recruited downstream of endocrine hormones (STAT3 and STAT5a and -5b) show a markedly higher primary sequence conservation compared with STATs that convey immune signals (STAT1-2, STAT4, and STAT6). A similar dichotomy in evolutionary conservation is observed for the JAK family of protein kinases, which activate STATs. The ligands to activate the JAK/STAT-signalling pathway include hormones and cytokines such as GH, prolactin, interleukin 6 (IL6) and IL12. In this paper, we examine the evolutionary forces that have acted on JAK/STAT signalling in the endocrine and immune systems and discuss the reasons why the JAK/STAT cascade that conveys classical immune signals has diverged much faster compared with endocrine JAK/STAT paralogues.


Endocrinology | 2014

Knockdown of monocarboxylate transporter 8 (mct8) disturbs brain development and locomotion in zebrafish.

Erik de Vrieze; Sandra M. W. van de Wiel; Jan Zethof; Gert Flik; Peter H.M. Klaren; Francisco J. Arjona

Allan-Herndon-Dudley syndrome (AHDS) is an inherited disorder of brain development characterized by severe psychomotor retardation. This X-linked disease is caused by mutations in the monocarboxylate transporter 8 (MCT8), an important thyroid hormone transporter in brain neurons. MCT8-knockout mice lack the 2 major neurological symptoms of AHDS, namely locomotor problems and cognitive impairment. The pathological mechanism explaining the symptoms is still obscure, and no cure for this condition is known. The development of an animal model that carries MCT8-related neurological symptoms is warranted. We have employed morpholino-based gene knockdown to create zebrafish deficient for mct8. Knockdown of mct8 results in specific symptoms in the thyroid axis and brain. The mct8-morphants showed impaired locomotor behavior and brain development. More specifically, we observed maldevelopment of the cerebellum and mid-hindbrain boundary and apoptotic clusters in the zebrafish brain. The mRNA expression of zebrafish orthologs of mammalian TSH, thyroid hormone transporters, and deiodinases was altered in mct8 morphants. In particular, deiodinase type 3 gene expression was consistently up-regulated in zebrafish mct8 morphants. The thyroid hormone metabolite tetrac, but not T3, partly ameliorated the affected phenotype and locomotion disability of morphant larvae. Our results show that mct8 knockdown in zebrafish larvae results in disturbances in the thyroid axis, brain, and locomotion behavior, which is congruent with the clinical aspect of impaired locomotion and cognition in patients with AHDS. Taken together, the zebrafish is a suitable animal model for the study of the pathophysiology of AHDS.


PLOS Genetics | 2015

The Ciliopathy Protein CC2D2A Associates with NINL and Functions in RAB8-MICAL3-Regulated Vesicle Trafficking.

Ruxandra Bachmann-Gagescu; Margo Dona; Lisette Hetterschijt; Edith L. G. M. Tonnaer; Theo A. Peters; Erik de Vrieze; Dorus A. Mans; Sylvia E. C. van Beersum; Ian G. Phelps; Heleen H. Arts; Jan E.E. Keunen; Marius Ueffing; Ronald Roepman; Karsten Boldt; Dan Doherty; Cecilia B. Moens; Stephan C. F. Neuhauss; Hannie Kremer; Erwin van Wijk

Ciliopathies are a group of human disorders caused by dysfunction of primary cilia, ubiquitous microtubule-based organelles involved in transduction of extra-cellular signals to the cell. This function requires the concentration of receptors and channels in the ciliary membrane, which is achieved by complex trafficking mechanisms, in part controlled by the small GTPase RAB8, and by sorting at the transition zone located at the entrance of the ciliary compartment. Mutations in the transition zone gene CC2D2A cause the related Joubert and Meckel syndromes, two typical ciliopathies characterized by central nervous system malformations, and result in loss of ciliary localization of multiple proteins in various models. The precise mechanisms by which CC2D2A and other transition zone proteins control protein entrance into the cilium and how they are linked to vesicular trafficking of incoming cargo remain largely unknown. In this work, we identify the centrosomal protein NINL as a physical interaction partner of CC2D2A. NINL partially co-localizes with CC2D2A at the base of cilia and ninl knockdown in zebrafish leads to photoreceptor outer segment loss, mislocalization of opsins and vesicle accumulation, similar to cc2d2a-/- phenotypes. Moreover, partial ninl knockdown in cc2d2a-/- embryos enhances the retinal phenotype of the mutants, indicating a genetic interaction in vivo, for which an illustration is found in patients from a Joubert Syndrome cohort. Similar to zebrafish cc2d2a mutants, ninl morphants display altered Rab8a localization. Further exploration of the NINL-associated interactome identifies MICAL3, a protein known to interact with Rab8 and to play an important role in vesicle docking and fusion. Together, these data support a model where CC2D2A associates with NINL to provide a docking point for cilia-directed cargo vesicles, suggesting a mechanism by which transition zone proteins can control the protein content of the ciliary compartment.


General and Comparative Endocrinology | 2012

Subfunctionalization of pomc paralogues in senegalese sole (solea senegalensis)

Yvette S. Wunderink; Erik de Vrieze; Juriaan R. Metz; Silke Halm; Gonzalo Martínez-Rodríguez; Gert Flik; Peter H.M. Klaren; Juan Miguel Mancera

The precursor protein proopiomelanocortin (POMC) gives rise to a variety of biologically active peptides through cell-specific posttranslational processing. Two transcripts of pomc were found in the flatfish Solea senegalensis (ssePOMC-A and ssePOMC-B), that most likely represent subfunctionalized paralogues: ssePOMC-A lacks the N-terminal cleavage site for β-MSH, whereas ssePOMC-B cannot yield ACTH and completely lacks the opioid consensus sequence in the β-END region. An analysis of nucleotide substitution rates shows that the POMC-derived peptides possess well-conserved regions under purifying selection, except the β-END derived from POMC-B, which has undergone positive selection. The calculated K(s) values for ssePOMC-A versus ssePOMC-B and zebrafish POMCαversus zebrafish POMCβ are 0.40 and 0.72, respectively, indicating that the zebrafish POMC paralogues started to evolve almost twice as early in evolution, and that the Solea POMC paralogues arose independently from the whole genome duplication event that gave rise to the zebrafish paralogues. This makes ssePOMC-B the first identified POMCα orthologue that lacks the opioid consensus. Furthermore, pomc-a expression is down-regulated in chronic stressed S. senegalensis juveniles, whereas pomc-b expression levels remain unaffected, indicating different physiological roles for both POMC paralogues. The distribution of functional POMC-derived peptide hormones over two pomc genes in S. senegalensis suggests subfunctionalization of the paralogues, a relevant notion when studying POMC function in endocrine responses.


PLOS ONE | 2014

Arachidonic acid enhances turnover of the dermal skeleton: studies on zebrafish scales.

Erik de Vrieze; Mari Moren; Juriaan R. Metz; Gert Flik; Kai Kristoffer Lie

In fish nutrition, the ratio between omega-3 and omega-6 poly-unsaturated fatty acids influences skeletal development. Supplementation of fish oils with vegetable oils increases the content of omega-6 fatty acids, such as arachidonic acid in the diet. Arachidonic acid is metabolized by cyclooxygenases to prostaglandin E2, an eicosanoid with effects on bone formation and remodeling. To elucidate effects of poly-unsaturated fatty acids on developing and existing skeletal tissues, zebrafish (Danio rerio) were fed (micro-) diets low and high in arachidonic acid content. Elasmoid scales, dermal skeletal plates, are ideal to study skeletal metabolism in zebrafish and were exploited in the present study. The fatty acid profile resulting from a high arachidonic acid diet induced mild but significant increase in matrix resorption in ontogenetic scales of adult zebrafish. Arachidonic acid affected scale regeneration (following removal of ontogenetic scales): mineral deposition was altered and both gene expression and enzymatic matrix metalloproteinase activity changed towards enhanced osteoclastic activity. Arachidonic acid also clearly stimulates matrix metalloproteinase activity in vitro, which implies that resorptive effects of arachidonic acid are mediated by matrix metalloproteinases. The gene expression profile further suggests that arachidonic acid increases maturation rate of the regenerating scale; in other words, enhances turnover. The zebrafish scale is an excellent model to study how and which fatty acids affect skeletal formation.


Genome Biology | 2015

KIAA0556 is a novel ciliary basal body component mutated in Joubert syndrome

Anna A. W. M. Sanders; Erik de Vrieze; Anas M. Alazami; Fatema Alzahrani; Erik B. Malarkey; Nasrin Sorusch; Lars Tebbe; Stefanie Kuhns; Teunis J. P. van Dam; Amal Alhashem; Brahim Tabarki; Qianhao Lu; Nils J. Lambacher; Julie Kennedy; Rachel V. Bowie; Lisette Hetterschijt; Sylvia E. C. van Beersum; Jeroen van Reeuwijk; Karsten Boldt; Hannie Kremer; Robert A. Kesterson; Dorota Monies; Mohamed Abouelhoda; Ronald Roepman; Martijn H. Huynen; Marius Ueffing; Rob B. Russell; Uwe Wolfrum; Bradley K. Yoder; Erwin van Wijk

BackgroundJoubert syndrome (JBTS) and related disorders are defined by cerebellar malformation (molar tooth sign), together with neurological symptoms of variable expressivity. The ciliary basis of Joubert syndrome related disorders frequently extends the phenotype to tissues such as the eye, kidney, skeleton and craniofacial structures.ResultsUsing autozygome and exome analyses, we identified a null mutation in KIAA0556 in a multiplex consanguineous family with hallmark features of mild Joubert syndrome. Patient-derived fibroblasts displayed reduced ciliogenesis potential and abnormally elongated cilia. Investigation of disease pathophysiology revealed that Kiaa0556-/- null mice possess a Joubert syndrome-associated brain-restricted phenotype. Functional studies in Caenorhabditis elegans nematodes and cultured human cells support a conserved ciliary role for KIAA0556 linked to microtubule regulation. First, nematode KIAA0556 is expressed almost exclusively in ciliated cells, and the worm and human KIAA0556 proteins are enriched at the ciliary base. Second, C. elegans KIAA0056 regulates ciliary A-tubule number and genetically interacts with an ARL13B (JBTS8) orthologue to control cilium integrity. Third, human KIAA0556 binds to microtubules in vitro and appears to stabilise microtubule networks when overexpressed. Finally, human KIAA0556 biochemically interacts with ciliary proteins and p60/p80 katanins. The latter form a microtubule-severing enzyme complex that regulates microtubule dynamics as well as ciliary functions.ConclusionsWe have identified KIAA0556 as a novel microtubule-associated ciliary base protein mutated in Joubert syndrome. Consistent with the mild patient phenotype, our nematode, mice and human cell data support the notion that KIAA0556 has a relatively subtle and variable cilia-related function, which we propose is related to microtubule regulation.


Bone | 2015

Identification of novel osteogenic compounds by an ex-vivo sp7 : Luciferase zebrafish scale assay

Erik de Vrieze; Jan Zethof; Stefan Schulte-Merker; Gert Flik; Juriaan R. Metz

Tight interactions among different cell types contributing to bone formation are of key importance in the maintenance of bone homeostasis. Based on the high similarity in responses to (anti)osteogenic signals between zebrafish scales and mammalian bone, we developed and validated a model to screen large numbers of compounds using ex-vivo cultured scales of a sp7:luciferase transgenic zebrafish. This model combines the high predictive value of explant cultures with quick, sensitive, and quantifiable readout converging the effects via various pathways including WNT-signaling, to SP7/osterix promoter activity. Sp7 is pivotal in osteoblast differentiation and activity and its promoter activity provides an excellent surrogate for sp7 expression. Bmp-2a was shown to dose-dependently increase sp7-driven luciferase activity ex vivo. Next, we identified novel effects on bone for 51.7% of the compounds from a small library of WNT-signaling modulators, including a strong osteogenic effect for niclosamide. From all previously characterized compounds, the effect on bone was correctly predicted for 70% of compounds, resulting in a 7% false positive- and 21% false negative rate. The proposed sp7:luciferase zebrafish scale model is unique, powerful and efficient new tool to assess compounds with osteogenic effects, prior to further testing in rodents.

Collaboration


Dive into the Erik de Vrieze's collaboration.

Top Co-Authors

Avatar

Erwin van Wijk

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Hannie Kremer

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Gert Flik

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Margo Dona

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Ronald Roepman

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Theo A. Peters

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge