Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lisette Hetterschijt is active.

Publication


Featured researches published by Lisette Hetterschijt.


American Journal of Human Genetics | 2012

Mutations in OTOGL, encoding the inner ear protein otogelin-like, cause moderate sensorineural hearing loss

Kemal O. Yariz; Duygu Duman; Celia Zazo Seco; Julia E. Dallman; Mingqian Huang; Theo A. Peters; Asli Sirmaci; Na Lu; Margit Schraders; Isaac Skromne; Jaap Oostrik; Oscar Diaz-Horta; Juan I. Young; Suna Tokgoz-Yilmaz; Ozlem Konukseven; Hashem Shahin; Lisette Hetterschijt; Moien Kanaan; Anne M.M. Oonk; Yvonne J. K. Edwards; Huawei Li; Semra Atalay; Susan H. Blanton; Alexandra DeSmidt; Xue Zhong Liu; R.J.E. Pennings; Zhongmin Lu; Zheng-Yi Chen; Hannie Kremer; Mustafa Tekin

Hereditary hearing loss is characterized by a high degree of genetic heterogeneity. Here we present OTOGL mutations, a homozygous one base pair deletion (c.1430 delT) causing a frameshift (p.Val477Glufs(∗)25) in a large consanguineous family and two compound heterozygous mutations, c.547C>T (p.Arg183(∗)) and c.5238+5G>A, in a nonconsanguineous family with moderate nonsyndromic sensorineural hearing loss. OTOGL maps to the DFNB84 locus at 12q21.31 and encodes otogelin-like, which has structural similarities to the epithelial-secreted mucin protein family. We demonstrate that Otogl is expressed in the inner ear of vertebrates with a transcription level that is high in embryonic, lower in neonatal, and much lower in adult stages. Otogelin-like is localized to the acellular membranes of the cochlea and the vestibular system and to a variety of inner ear cells located underneath these membranes. Knocking down of otogl with morpholinos in zebrafish leads to sensorineural hearing loss and anatomical changes in the inner ear, supporting that otogelin-like is essential for normal inner ear function. We propose that OTOGL mutations affect the production and/or function of acellular structures of the inner ear, which ultimately leads to sensorineural hearing loss.


PLOS Genetics | 2013

Active Transport and Diffusion Barriers Restrict Joubert Syndrome-Associated ARL13B/ARL-13 to an Inv-like Ciliary Membrane Subdomain

Sebiha Cevik; Anna A. W. M. Sanders; Erwin van Wijk; Karsten Boldt; Lara Clarke; Jeroen van Reeuwijk; Yuji Hori; Nicola Horn; Lisette Hetterschijt; Anita Wdowicz; Andrea Mullins; Katarzyna Kida; Oktay I. Kaplan; Sylvia E. C. van Beersum; Ka Man Wu; Stef J.F. Letteboer; Dorus A. Mans; Toshiaki Katada; Kenji Kontani; Marius Ueffing; Ronald Roepman; Hannie Kremer; Oliver E. Blacque

Cilia are microtubule-based cell appendages, serving motility, chemo-/mechano-/photo- sensation, and developmental signaling functions. Cilia are comprised of distinct structural and functional subregions including the basal body, transition zone (TZ) and inversin (Inv) compartments, and defects in this organelle are associated with an expanding spectrum of inherited disorders including Bardet-Biedl syndrome (BBS), Meckel-Gruber Syndrome (MKS), Joubert Syndrome (JS) and Nephronophthisis (NPHP). Despite major advances in understanding ciliary trafficking pathways such as intraflagellar transport (IFT), how proteins are transported to subciliary membranes remains poorly understood. Using Caenorhabditis elegans and mammalian cells, we investigated the transport mechanisms underlying compartmentalization of JS-associated ARL13B/ARL-13, which we previously found is restricted at proximal ciliary membranes. We now show evolutionary conservation of ARL13B/ARL-13 localisation to an Inv-like subciliary membrane compartment, excluding the TZ, in many C. elegans ciliated neurons and in a subset of mammalian ciliary subtypes. Compartmentalisation of C. elegans ARL-13 requires a C-terminal RVVP motif and membrane anchoring to prevent distal cilium and nuclear targeting, respectively. Quantitative imaging in more than 20 mutants revealed differential contributions for IFT and ciliopathy modules in defining the ARL-13 compartment; IFT-A/B, IFT-dynein and BBS genes prevent ARL-13 accumulation at periciliary membranes, whereas MKS/NPHP modules additionally inhibit ARL-13 association with TZ membranes. Furthermore, in vivo FRAP analyses revealed distinct roles for IFT and MKS/NPHP genes in regulating a TZ barrier to ARL-13 diffusion, and intraciliary ARL-13 diffusion. Finally, C. elegans ARL-13 undergoes IFT-like motility and quantitative protein complex analysis of human ARL13B identified functional associations with IFT-B complexes, mapped to IFT46 and IFT74 interactions. Together, these findings reveal distinct requirements for sequence motifs, IFT and ciliopathy modules in defining an ARL-13 subciliary membrane compartment. We conclude that MKS/NPHP modules comprise a TZ barrier to ARL-13 diffusion, whereas IFT genes predominantly facilitate ARL-13 ciliary entry and/or retention via active transport mechanisms.


Proceedings of the National Academy of Sciences of the United States of America | 2013

ZNF408 is mutated in familial exudative vitreoretinopathy and is crucial for the development of zebrafish retinal vasculature

Rob W.J. Collin; Konstantinos Nikopoulos; Margo Dona; Christian Gilissen; Alexander Hoischen; F. Nienke Boonstra; James A. Poulter; Hiroyuki Kondo; Wolfgang Berger; Carmel Toomes; Tomoko Tahira; Lucas R. Mohn; Ellen A.W. Blokland; Lisette Hetterschijt; Manir Ali; Johanne M. Groothuismink; Lonneke Duijkers; Chris F. Inglehearn; Lea Sollfrank; Tim M. Strom; Eiichi Uchio; C. Erik van Nouhuys; Hannie Kremer; Joris A. Veltman; Erwin van Wijk; Frans P.M. Cremers

Familial exudative vitreoretinopathy (FEVR) is a genetically heterogeneous disorder characterized by abnormal vascularization of the peripheral retina, which can result in retinal detachment and severe visual impairment. In a large Dutch FEVR family, we performed linkage analysis, exome sequencing, and segregation analysis of DNA variants. We identified putative disease-causing DNA variants in proline-alanine-rich ste20-related kinase (c.791dup; p.Ser265ValfsX64) and zinc finger protein 408 (ZNF408) (c.1363C>T; p.His455Tyr), the latter of which was also present in an additional Dutch FEVR family that subsequently appeared to share a common ancestor with the original family. Sequence analysis of ZNF408 in 132 additional individuals with FEVR revealed another potentially pathogenic missense variant, p.Ser126Asn, in a Japanese family. Immunolocalization studies in COS-1 cells transfected with constructs encoding the WT and mutant ZNF408 proteins, revealed that the WT and the p.Ser126Asn mutant protein show complete nuclear localization, whereas the p.His455Tyr mutant protein was localized almost exclusively in the cytoplasm. Moreover, in a cotransfection assay, the p.His455Tyr mutant protein retains the WT ZNF408 protein in the cytoplasm, suggesting that this mutation acts in a dominant-negative fashion. Finally, morpholino-induced knockdown of znf408 in zebrafish revealed defects in developing retinal and trunk vasculature, that could be rescued by coinjection of RNA encoding human WT ZNF408 but not p.His455Tyr mutant ZNF408. Together, our data strongly suggest that mutant ZNF408 results in abnormal retinal vasculogenesis in humans and is associated with FEVR.


American Journal of Human Genetics | 2014

Disruption of the Basal Body Protein POC1B Results in Autosomal-Recessive Cone-Rod Dystrophy

Susanne Roosing; Ideke J.C. Lamers; Erik de Vrieze; L. Ingeborgh van den Born; Stanley Lambertus; Heleen H. Arts; Karsten Boldt; Elfride De Baere; Caroline C. W. Klaver; Frauke Coppieters; David A. Koolen; Dorien Lugtenberg; Kornelia Neveling; Jeroen van Reeuwijk; Marius Ueffing; Sylvia E. C. van Beersum; Marijke N. Zonneveld-Vrieling; Theo A. Peters; Carel B. Hoyng; Hannie Kremer; Lisette Hetterschijt; Stef J.F. Letteboer; Erwin van Wijk; Ronald Roepman; Anneke I. den Hollander; Frans P.M. Cremers

Exome sequencing revealed a homozygous missense mutation (c.317C>G [p.Arg106Pro]) in POC1B, encoding POC1 centriolar protein B, in three siblings with autosomal-recessive cone dystrophy or cone-rod dystrophy and compound-heterozygous POC1B mutations (c.199_201del [p.Gln67del] and c.810+1G>T) in an unrelated person with cone-rod dystrophy. Upon overexpression of POC1B in human TERT-immortalized retinal pigment epithelium 1 cells, the encoded wild-type protein localized to the basal body of the primary cilium, whereas this localization was lost for p.Arg106Pro and p.Gln67del variant forms of POC1B. Morpholino-oligonucleotide-induced knockdown of poc1b translation in zebrafish resulted in a dose-dependent small-eye phenotype, impaired optokinetic responses, and decreased length of photoreceptor outer segments. These ocular phenotypes could partially be rescued by wild-type human POC1B mRNA, but not by c.199_201del and c.317C>G mutant human POC1B mRNAs. Yeast two-hybrid screening of a human retinal cDNA library revealed FAM161A as a binary interaction partner of POC1B. This was confirmed in coimmunoprecipitation and colocalization assays, which both showed loss of FAM161A interaction with p.Arg106Pro and p.Gln67del variant forms of POC1B. FAM161A was previously implicated in autosomal-recessive retinitis pigmentosa and shown to be located at the base of the photoreceptor connecting cilium, where it interacts with several other ciliopathy-associated proteins. Altogether, this study demonstrates that POC1B mutations result in a defect of the photoreceptor sensory cilium and thus affect cone and rod photoreceptors.


Human Molecular Genetics | 2012

FAM161A, associated with retinitis pigmentosa, is a component of the cilia-basal body complex and interacts with proteins involved in ciliopathies

Silvio Alessandro Di Gioia; Stef J.F. Letteboer; Corinne Kostic; Dikla Bandah-Rozenfeld; Lisette Hetterschijt; Dror Sharon; Yvan Arsenijevic; Ronald Roepman; Carlo Rivolta

Retinitis pigmentosa (RP) is a retinal degenerative disease characterized by the progressive loss of photoreceptors. We have previously demonstrated that RP can be caused by recessive mutations in the human FAM161A gene, encoding a protein with unknown function that contains a conserved region shared only with a distant paralog, FAM161B. In this study, we show that FAM161A localizes at the base of the photoreceptor connecting cilium in human, mouse and rat. Furthermore, it is also present at the ciliary basal body in ciliated mammalian cells, both in native conditions and upon the expression of recombinant tagged proteins. Yeast two-hybrid analysis of binary interactions between FAM161A and an array of ciliary and ciliopathy-associated proteins reveals direct interaction with lebercilin, CEP290, OFD1 and SDCCAG8, all involved in hereditary retinal degeneration. These interactions are mediated by the C-terminal moiety of FAM161A, as demonstrated by pull-down experiments in cultured cell lines and in bovine retinal extracts. As other ciliary proteins, FAM161A can also interact with the microtubules and organize itself into microtubule-dependent intracellular networks. Moreover, small interfering RNA-mediated depletion of FAM161A transcripts in cultured cells causes the reduction in assembled primary cilia. Taken together, these data indicate that FAM161A-associated RP can be considered as a novel retinal ciliopathy and that its molecular pathogenesis may be related to other ciliopathies.


PLOS Genetics | 2015

The Ciliopathy Protein CC2D2A Associates with NINL and Functions in RAB8-MICAL3-Regulated Vesicle Trafficking.

Ruxandra Bachmann-Gagescu; Margo Dona; Lisette Hetterschijt; Edith L. G. M. Tonnaer; Theo A. Peters; Erik de Vrieze; Dorus A. Mans; Sylvia E. C. van Beersum; Ian G. Phelps; Heleen H. Arts; Jan E.E. Keunen; Marius Ueffing; Ronald Roepman; Karsten Boldt; Dan Doherty; Cecilia B. Moens; Stephan C. F. Neuhauss; Hannie Kremer; Erwin van Wijk

Ciliopathies are a group of human disorders caused by dysfunction of primary cilia, ubiquitous microtubule-based organelles involved in transduction of extra-cellular signals to the cell. This function requires the concentration of receptors and channels in the ciliary membrane, which is achieved by complex trafficking mechanisms, in part controlled by the small GTPase RAB8, and by sorting at the transition zone located at the entrance of the ciliary compartment. Mutations in the transition zone gene CC2D2A cause the related Joubert and Meckel syndromes, two typical ciliopathies characterized by central nervous system malformations, and result in loss of ciliary localization of multiple proteins in various models. The precise mechanisms by which CC2D2A and other transition zone proteins control protein entrance into the cilium and how they are linked to vesicular trafficking of incoming cargo remain largely unknown. In this work, we identify the centrosomal protein NINL as a physical interaction partner of CC2D2A. NINL partially co-localizes with CC2D2A at the base of cilia and ninl knockdown in zebrafish leads to photoreceptor outer segment loss, mislocalization of opsins and vesicle accumulation, similar to cc2d2a-/- phenotypes. Moreover, partial ninl knockdown in cc2d2a-/- embryos enhances the retinal phenotype of the mutants, indicating a genetic interaction in vivo, for which an illustration is found in patients from a Joubert Syndrome cohort. Similar to zebrafish cc2d2a mutants, ninl morphants display altered Rab8a localization. Further exploration of the NINL-associated interactome identifies MICAL3, a protein known to interact with Rab8 and to play an important role in vesicle docking and fusion. Together, these data support a model where CC2D2A associates with NINL to provide a docking point for cilia-directed cargo vesicles, suggesting a mechanism by which transition zone proteins can control the protein content of the ciliary compartment.


PLOS ONE | 2010

The Mitotic Arrest Deficient Protein MAD2B Interacts with the Clathrin Light Chain A during Mitosis

Klaas Medendorp; Lilian Vreede; Jan J. M. van Groningen; Lisette Hetterschijt; Linda Brugmans; Patrick A. M. Jansen; Wilhelmina H. van den Hurk; Diederik R.H. de Bruijn; Ad Geurts van Kessel

BACKGROUND Although the mitotic arrest deficient protein MAD2B (MAD2L2) is thought to inhibit the anaphase promoting complex (APC) by binding to CDC20 and/or CDH1 (FZR1), its exact role in cell cycle control still remains to be established. METHODOLOGY/PRINCIPAL FINDINGS Using a yeast two-hybrid interaction trap we identified the human clathrin light chain A (CLTA) as a novel MAD2B binding protein. A direct interaction was established in mammalian cells via GST pull-down and endogenous co-immunoprecipitation during the G2/M phase of the cell cycle. Through subsequent confocal laser scanning microscopy we found that MAD2B and CLTA co-localize at the mitotic spindle. Clathrin forms a trimeric structure, i.e., the clathrin triskelion, consisting of three heavy chains (CLTC), each with an associated light chain. This clathrin structure has previously been shown to be required for the function of the mitotic spindle through stabilization of kinetochore fibers. Upon siRNA-mediated MAD2B depletion, we found that CLTA was no longer concentrated at the mitotic spindle but, instead, diffusely distributed throughout the cell. In addition, we found a marked increase in the percentage of misaligned chromosomes. CONCLUSIONS/SIGNIFICANCE Previously, we identified MAD2B as an interactor of the renal cell carcinoma (RCC)-associated protein PRCC. In addition, we found that fusion of PRCC with the transcription factor TFE3 in t(X;1)(p11;q21)-positive RCCs results in an impairment of this interaction and a concomitant failure to shuttle MAD2B to the nucleus. Our current data show that MAD2B interacts with CLTA during the G2/M phase of the cell cycle and that depletion of MAD2B leads to a marked increase in the percentage of misaligned chromosomes and a redistribution of CLTA during mitosis.


PLOS ONE | 2009

The mitotic arrest deficient protein MAD2B interacts with the small GTPase RAN throughout the cell cycle.

Klaas Medendorp; Jan J. M. van Groningen; Lilian Vreede; Lisette Hetterschijt; Wilhelmina H. van den Hurk; Diederik R.H. de Bruijn; Linda Brugmans; Ad Geurts van Kessel

Background Previously, we identified the mitotic arrest deficient protein MAD2B (MAD2L2) as a bona fide interactor of the renal cell carcinoma (RCC)-associated protein PRCC. In addition, we found that fusion of PRCC with the transcription factor TFE3 in t(X;1)(p11;q21)-positive RCCs results in an impairment of this interaction and, concomitantly, an abrogation of cell cycle progression. Although MAD2B is thought to inhibit the anaphase promoting complex (APC) by binding to CDC20 and/or CDH1(FZR1), its exact role in cell cycle control still remains to be established. Methodology/Principal Findings Using a yeast two-hybrid interaction trap we identified the small GTPase RAN, a well-known cell cycle regulator, as a novel MAD2B binding protein. Endogenous interaction was established in mammalian cells via co-localization and co-immunoprecipitation of the respective proteins. The interaction domain of RAN could be assigned to a C-terminal moiety of 60 amino acids, whereas MAD2B had to be present in its full-length conformation. The MAD2B-RAN interaction was found to persist throughout the cell cycle. During mitosis, co-localization at the spindle was observed. Conclusions/Significance The small GTPase RAN is a novel MAD2B binding protein. This novel protein-protein interaction may play a role in (i) the control over the spindle checkpoint during mitosis and (ii) the regulation of nucleocytoplasmic trafficking during interphase.


Experimental Cell Research | 2009

The renal cell carcinoma-associated oncogenic fusion protein PRCCTFE3 provokes p21 WAF1/CIP1-mediated cell cycle delay.

Klaas Medendorp; Jan J. M. van Groningen; Lilian Vreede; Lisette Hetterschijt; Linda Brugmans; Wilhelmina H. van den Hurk; Ad Geurts van Kessel

Previously, we found that in t(X;1)(p11;q21)-positive renal cell carcinomas the bHLH-LZ transcription factor TFE3 is fused to a novel protein designated PRCC. In addition, we found that the PRCCTFE3 fusion protein, which has retained all known functional domains of TFE3, acts as a more potent transcriptional activator than wild type TFE3. We also found that PRCCTFE3 expression confers in vitro and in vivo transformation onto various cell types, including those of the kidney. Here we show that de novo expression of the PRCCTFE3 fusion protein provokes cell cycle delay. This delay, which is mediated by induction of the cyclin-dependent kinase inhibitor p21((WAF1/CIP1)), affects both the G1/S and the G2/M phases of the cell cycle and prevents the cells from undergoing polyploidization. We also show that the PRCCTFE3 fusion protein binds directly to the p21((WAF1/CIP1)) promoter and that the PRCCTFE3-induced up-regulation of p21((WAF1/CIP1)) leads to activation of the pRB pathway. Finally, we show that in t(X;1)(p11;q21)-positive renal tumor cells several processes that link PRCCTFE3 expression to p21((WAF1/CIP1))-mediated cell cycle delay are abrogated. Our data suggest a scenario in which, during the course of renal cell carcinoma development, an initial PRCCTFE3-induced cell cycle delay must be numbed, thus permitting continued proliferation and progression towards full-blown malignancy.


Genome Biology | 2015

KIAA0556 is a novel ciliary basal body component mutated in Joubert syndrome

Anna A. W. M. Sanders; Erik de Vrieze; Anas M. Alazami; Fatema Alzahrani; Erik B. Malarkey; Nasrin Sorusch; Lars Tebbe; Stefanie Kuhns; Teunis J. P. van Dam; Amal Alhashem; Brahim Tabarki; Qianhao Lu; Nils J. Lambacher; Julie Kennedy; Rachel V. Bowie; Lisette Hetterschijt; Sylvia E. C. van Beersum; Jeroen van Reeuwijk; Karsten Boldt; Hannie Kremer; Robert A. Kesterson; Dorota Monies; Mohamed Abouelhoda; Ronald Roepman; Martijn H. Huynen; Marius Ueffing; Rob B. Russell; Uwe Wolfrum; Bradley K. Yoder; Erwin van Wijk

BackgroundJoubert syndrome (JBTS) and related disorders are defined by cerebellar malformation (molar tooth sign), together with neurological symptoms of variable expressivity. The ciliary basis of Joubert syndrome related disorders frequently extends the phenotype to tissues such as the eye, kidney, skeleton and craniofacial structures.ResultsUsing autozygome and exome analyses, we identified a null mutation in KIAA0556 in a multiplex consanguineous family with hallmark features of mild Joubert syndrome. Patient-derived fibroblasts displayed reduced ciliogenesis potential and abnormally elongated cilia. Investigation of disease pathophysiology revealed that Kiaa0556-/- null mice possess a Joubert syndrome-associated brain-restricted phenotype. Functional studies in Caenorhabditis elegans nematodes and cultured human cells support a conserved ciliary role for KIAA0556 linked to microtubule regulation. First, nematode KIAA0556 is expressed almost exclusively in ciliated cells, and the worm and human KIAA0556 proteins are enriched at the ciliary base. Second, C. elegans KIAA0056 regulates ciliary A-tubule number and genetically interacts with an ARL13B (JBTS8) orthologue to control cilium integrity. Third, human KIAA0556 binds to microtubules in vitro and appears to stabilise microtubule networks when overexpressed. Finally, human KIAA0556 biochemically interacts with ciliary proteins and p60/p80 katanins. The latter form a microtubule-severing enzyme complex that regulates microtubule dynamics as well as ciliary functions.ConclusionsWe have identified KIAA0556 as a novel microtubule-associated ciliary base protein mutated in Joubert syndrome. Consistent with the mild patient phenotype, our nematode, mice and human cell data support the notion that KIAA0556 has a relatively subtle and variable cilia-related function, which we propose is related to microtubule regulation.

Collaboration


Dive into the Lisette Hetterschijt's collaboration.

Top Co-Authors

Avatar

Erwin van Wijk

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Hannie Kremer

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Ronald Roepman

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Theo A. Peters

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Erik de Vrieze

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Margo Dona

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge