Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik H. Ervin is active.

Publication


Featured researches published by Erik H. Ervin.


Scientia Agricola | 2009

Enzymatic antioxidant responses to biostimulants in maize and soybean subjected to drought

Ana Carolina Feitosa de Vasconcelos; Xunzhong Zhang; Erik H. Ervin; Jorge de Castro Kiehl

Water stress is one of the most important environmental factors inducing physiological changes in plants, such as decrease in the water potential of the cells, the stomatal closure; and the development of oxidative processes mediated by reactive oxygen species (ROS). Antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) are efficient scavengers of ROS. The aim of this research was to examine how the application of biostimulant based on humic substances and aminoacids may affect activity levels of SOD, CAT, and APX of maize and soybean plants under well-watered or drought stress conditions. Pots (4.5 L) were filled with a Typic Hapludult soil where the biostimulants doses were applied. It was taken leaf samples in order to analyze SOD, CAT, and APX activities in plants. SOD and APX activity levels were increased by application of biostimulant 1 in maize subjected to stress. Catalase activity was not enhanced in plants by using the biostimulants. The composition of the biostimulants was not able to enhance stress tolerance in maize and soybean plants subjected to water stress.


Biotechnology for Biofuels | 2015

Assessment of drought tolerance of 49 switchgrass (Panicum virgatum) genotypes using physiological and morphological parameters.

Yiming Liu; Xunzhong Zhang; Hong Tran; Liang Shan; Jeongwoon Kim; Kevin L. Childs; Erik H. Ervin; Taylor Frazier; Bingyu Zhao

BackgroundSwitchgrass (Panicum virgatum L.) is a warm-season C4 grass that is a target lignocellulosic biofuel species. In many regions, drought stress is one of the major limiting factors for switchgrass growth. The objective of this study was to evaluate the drought tolerance of 49 switchgrass genotypes. The relative drought stress tolerance was determined based on a set of parameters including plant height, leaf length, leaf width, leaf sheath length, leaf relative water content (RWC), electrolyte leakage (EL), photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (Tr), intercellular CO2 concentration (Ci), and water use efficiency (WUE).ResultsSRAP marker analysis determined that the selected 49 switchgrass genotypes represent a diverse genetic pool of switchgrass germplasm. Principal component analysis (PCA) and drought stress indexes (DSI) of each physiological parameter showed significant differences in the drought stress tolerance among the 49 genotypes. Heatmap and PCA data revealed that physiological parameters are more sensitive than morphological parameters in distinguishing the control and drought treatments. Metabolite profiling data found that under drought stress, the five best drought-tolerant genotypes tended to have higher levels of abscisic acid (ABA), spermine, trehalose, and fructose in comparison to the five most drought-sensitive genotypes.ConclusionBased on PCA ranking value, the genotypes TEM-SEC, TEM-LoDorm, BN-13645-64, Alamo, BN-10860-61, BN-12323-69, TEM-SLC, T-2086, T-2100, T-2101, Caddo, and Blackwell-1 had relatively higher ranking values, indicating that they are more tolerant to drought. In contrast, the genotypes Grif Nebraska 28, Grenville-2, Central Iowa Germplasm, Cave-in-Rock, Dacotah, and Nebraska 28 were found to be relatively sensitive to drought stress. By analyzing physiological response parameters and different metabolic profiles, the methods utilized in this study identified drought-tolerant and drought-sensitive switchgrass genotypes. These results provide a foundation for future research directed at understanding the molecular mechanisms underlying switchgrass tolerance to drought.


PLOS ONE | 2014

Heat Shock Proteins in Relation to Heat Stress Tolerance of Creeping Bentgrass at Different N Levels

Kehua Wang; Xunzhong Zhang; Mike Goatley; Erik H. Ervin

Heat stress is a primary factor causing summer bentgrass decline. Changes in gene expression at the transcriptional and/or translational level are thought to be a fundamental mechanism in plant response to environmental stresses. Heat stress redirects protein synthesis in higher plants and results in stress protein synthesis, particularly heat shock proteins (HSPs). The goal of this work was to analyze the expression pattern of major HSPs in creeping bentgrass (Agrostis stolonifera L.) during different heat stress periods and to study the influence of nitrogen (N) on the HSP expression patterns. A growth chamber study on ‘Penn-A4’ creeping bentgrass subjected to 38/28°C day/night for 50 days, was conducted with four nitrate rates (no N-0, low N-2.5, medium N-7.5, and high N-12.5 kg N ha−1) applied biweekly. Visual turfgrass quality (TQ), normalized difference vegetation index (NDVI), photochemical efficiency of photosystem II (Fv/Fm), shoot electrolyte leakage (ShEL), and root viability (RV) were monitored, along with the expression pattern of HSPs. There was no difference in measured parameters between treatments until week seven, except TQ at week five. At week seven, grass at medium N had better TQ, NDVI, and Fv/Fm accompanied by lower ShEL and higher RV, suggesting a major role in improved heat tolerance. All the investigated HSPs (HSP101, HSP90, HSP70, and sHSPs) were up-regulated by heat stress. Their expression patterns indicated cooperation between different HSPs and their roles in bentgrass thermotolerance. In addition, their production seems to be resource dependent. This study could further improve our understanding about how different N levels affect bentgrass thermotolerance.


Frontiers in Plant Science | 2017

Physiological Mechanism of Enhancing Salt Stress Tolerance of Perennial Ryegrass by 24-Epibrassinolide

Wenli Wu; Qiang Zhang; Erik H. Ervin; Zhiping Yang; Xunzhong Zhang

Brassinosteroids (BR) regulate plant tolerance to salt stress but the mechanisms underlying are not fully understood. This study was to investigate physiological mechanisms of 24-epibrassinolide (EBR)s impact on salt stress tolerance in perennial ryegrass (Lolium perenne L.) The grass seedlings were treated with EBR at 0, 10, and 100 nM, and subjected to salt stress (250 mM NaCl). The grass irrigated with regular water without EBR served as the control. Salt stress increased leaf electrolyte leakage (EL), malondialdehyde (MDA), and reduced photosynthetic rate (Pn). Exogenous EBR reduced EL and MDA, increased Pn, chlorophyll content, and stomatal conductance (gs). The EBR applications also alleviated decline of superoxide dismutase (SOD) and catalase (CAT) and ascorbate peroxidase (APX) activity when compared to salt treatment alone. Salt stress increased leaf abscisic acid (ABA) and gibberellin A4 (GA4) content but reduced indole-3-acetic acid (IAA), zeatin riboside (ZR), isopentenyl adenosine (iPA), and salicylic acid (SA). Exogenous EBR at 10 nm and 100 nM increased ABA, and iPA content under salt stress. The EBR treatment at 100 nM also increased leaf IAA, ZR, JA, and SA. In addition, EBR treatments increased leaf proline and ions (K+, Mg2+, and Ca2+) content, and reduced Na+/K+ in leaf tissues. The results of this study suggest that EBR treatment may improve salt stress tolerance by increasing the level of selected hormones and antioxidant enzyme (SOD and CAT) activity, promoting accumulation of proline and ions (K+, Ca2+, and Mg2+) in perennial ryegrass.


PLOS ONE | 2015

Physiological Evaluation of Alkali-Salt Tolerance of Thirty Switchgrass ( Panicum virgatum ) Lines

Guofu Hu; Yiming Liu; Xunzhong Zhang; Fengjiao Yao; Yan Huang; Erik H. Ervin; Bingyu Zhao

Soil salt-alkalization is a major limiting factor for crop production in many regions. Switchgrass (Panicum virgatum L.) is a warm-season C4 perennial rhizomatous bunchgrass and a target lignocellulosic biofuel species. The objective of this study was to evaluate relative alkali-salt tolerance among 30 switchgrass lines. Tillers of each switchgrass line were transplanted into pots filled with fine sand. Two months after transplanting, plants at E5 developmental stage were grown in either half strength Hoagland’s nutrient solution with 0 mM Na+ (control) or half strength Hoagland’s nutrient solution with 150 mM Na+ and pH of 9.5 (alkali-salt stress treatment) for 20 d. Alkali-salt stress damaged cell membranes [higher electrolyte leakage (EL) ], reduced leaf relative water content (RWC), net photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (Tr). An alkali-salt stress tolerance trait index (ASTTI) for each parameter was calculated based on the ratio of the value under alkali-salt stress and the value under non-stress conditions for each parameter of each line. Relative alkali-salt tolerance was determined based on principal components analysis and cluster analysis of the physiological parameters and their ASTTI values. Significant differences in alkali-salt stress tolerance were found among the 30 lines. Lowland lines TEM-SEC, Alamo, TEM-SLC and Kanlow were classified as alkali-salt tolerant. In contrast, three lowland lines (AM-314/MS-155, BN-13645-64) and two upland lines (Caddo and Blackwell-1) were classified as alkali-salt sensitive. The results suggest wide variations exist in alkali-salt stress tolerance among the 30 switchgrass lines. The approach of using a combination of principal components and cluster analysis of the physiological parameters and related ASTTI is feasible for evaluating alkali-salt tolerance in switchgrass.


Compost Science & Utilization | 2010

Soil carbon and physiological responses of corn and soybean to organic amendments.

Chandra L. Bowden; Gregory K. Evanylo; Xunzhong Zhang; Erik H. Ervin; John R. Seiler

Field research was conducted to assess the effects of organic and inorganic soil amendments on soil humified carbon content and plant physiological properties. Long term applications of various types and rates of compost, poultry litter and inorganic fertilizer were assessed for their effects on corn [Zea mays (L.) Pioneer 31G20] and soybean [Glycine max (l.) Delta Pine 4933RR] grown in a Virginia (United States) Piedmont soil in 2004 and 2005. Treatment differences in leaf antioxidant activity were only observed in the corn plots. Corn fertilized with amendments supplying the crops nitrogen needs, regardless of the source, had greater leaf nitrogen (+29%), chlorophyll (+33%), and protein contents (+37%), lower superoxide dismutase (−29%) and ascorbate peroxidase (−17%) activities, and lower malondialdehyde (−33%) contents than the control and low nitrogen treatments. Yield was strongly related to midseason leaf nitrogen contents (R2=0.87, p<0.0001) and not with soil humified carbon (R =0.02, p=0.0543). Soybean grown in the organically amended soil had higher yields (9-21% increase), protein contents (4-9% increase) and seed weights (5-14% increase) than the inorganically fertilized and unfertilized treatments. Improvements in soybean yield and seed quality were due to organic amendment benefits other than plant available water or nutrient supply.


Journal of Plant Nutrition | 2013

EFFECTS OF NITRATE AND CYTOKININ ON CREEPING BENTGRASS UNDER SUPRAOPTIMAL TEMPERATURES

Kehua Wang; Xunzhong Zhang; Erik H. Ervin

Heat stress reduces creeping bentgrass performance in temperate to sub-tropical climates. The research objective was to characterize effects of nitrogen (N) and cytokinin (CK) on creeping bentgrass under heat stress. In a 38°C/28°C chamber, grasses were treated with two nitrogen (2.5 and 7.5 kg N ha−1) and three CK rates (0, 10 and 100 μM) biweekly. Grass grown at high N had better turf quality, higher photochemical efficiency (Fv/Fm), normalized difference vegetation index (NDVI), and chlorophyll concentration at d15 and 28 than low N. CK increased NDVI at d15, with Fv/Fm of the CK100 treatment being 18% higher than that of CK0 at d28. Under high N with 100 μM CK, root trans-zeatin riboside (tZR) and isopentenyl adenosine (iPA) were 160% and 97% higher than under low N without CK, respectively. These results demonstrate positive impacts of N and CK on creeping bentgrass under heat, with N playing a dominant role.


Communications in Soil Science and Plant Analysis | 2006

Determination of Fatty Acid Composition of Turfgrass by High‐Performance Liquid Chromatography

Chao Shang; Xunzhong Zhang; Gregg C. Munshaw; Erik H. Ervin

Abstract The fatty acid composition of warm‐season turfgrasses is physiologically regulated by environmental changes, particularly temperature. Species or cultivars, which have increased degree of unsaturation, usually have a greater freeze resistance. Quantifying fatty acid composition not only can help understand the freeze‐resistant mechanism of warm‐season turfgrasses but also in practice develop a management strategy for better turf. A high‐performance liquid chromatography (HPLC) method was developed for this purpose. The method is based on the bromophenacyl reaction of fatty acids and separation on a C8 column with gradient elution. Information on limit of identification, linearity of quantification, response factor, and derivatization conditions is presented and discussed. The method presented is simple to apply and provides an alternative to the traditional gas chromatography (GC) method. The results of fatty acid composition from a field freezing‐resistance experiment are discussed.


Archive | 2016

Small Heat Shock Proteins, a Key Player in Grass Plant Thermotolerance

Kehua Wang; Xunzhong Zhang; Erik H. Ervin

Small heat shock proteins (sHSPs) are by far the most complex group of HSPs that function to protect practically all cellular compartments in plants under stress due to their unusual abundance and diversity. Recent advances in proteomics, genomics, and other cellular and molecular techniques have facilitated the identification and characterization of sHSPs in higher plants, especially grass plants from the family of Poaceae that are economically important as crops and grasslands. Here we introduce the structure and function of plant sHSPs, and then summarize recent research progress on the role of sHSPs in grass tolerance to heat stress.


PLOS ONE | 2018

Antioxidant metabolism variation associated with alkali-salt tolerance in thirty switchgrass (Panicum virgatum) lines

Guofu Hu; Yiming Liu; Tianqi Duo; Bingyu Zhao; Guowen Cui; Jing Ji; Xiao Kuang; Erik H. Ervin; Xunzhong Zhang

Soil salinization is a major factor limiting crop growth and development in many areas. Switchgrass (Panicum virgatum L.) is an important warm-season grass species used for biofuel production. The objective of this study was to investigate antioxidant metabolism, proline,and protein variation associated with alkali-salt tolerance among 30 switchgrass lines and identify metabolic markers for evaluating alkali-salt tolerance of switchgrass lines. The grass lines were transplanted into plastic pots containing fine sand. When the plants reached E5 developmental stage, they were subjected to either alkali-salt stress treatment (150 mM Na+ and pH of 9.5) or control (no alkali-salt stress) for 20 d. The 30 switchgrass lines differed in alkali-salt tolerance as determined by the level of leaf malondialdehyde (MDA), antioxidant enzyme activity [(superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX)], proline and protein. Alkali-salt stress increased MDA, proline, SOD, reduced CAT activity, but its effect on protein and APX varied depending on lines. Wide variations in the five parameters existed among the 30 lines. In general, the lines with higher CAT activity and lower proline content under alkali-salt stress had less MDA, exhibiting better alkali-salt tolerance. Among the five parameters, CAT can be considered as valuable metabolic markers for assessment of switchgrass tolerance to alkali-salt stress.

Collaboration


Dive into the Erik H. Ervin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. J. Koski

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregg C. Munshaw

Mississippi State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge