Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik J. Luber is active.

Publication


Featured researches published by Erik J. Luber.


ACS Nano | 2014

Anodes for Sodium Ion Batteries Based on Tin–Germanium–Antimony Alloys

Behdokht Farbod; Kai Cui; W. Peter Kalisvaart; Martin Kupsta; Beniamin Zahiri; Alireza Kohandehghan; Elmira Memarzadeh Lotfabad; Zhi Li; Erik J. Luber; David Mitlin

Here we provide the first report on several compositions of ternary Sn-Ge-Sb thin film alloys for application as sodium ion battery (aka NIB, NaB or SIB) anodes, employing Sn50Ge50, Sb50Ge50, and pure Sn, Ge, Sb as baselines. Sn33Ge33Sb33, Sn50Ge25Sb25, Sn60Ge20Sb20, and Sn50Ge50 all demonstrate promising electrochemical behavior, with Sn50Ge25Sb25 being the best overall. This alloy has an initial reversible specific capacity of 833 mAhg(-1) (at 85 mAg(-1)) and 662 mAhg(-1) after 50 charge-discharge cycles. Sn50Ge25Sb25 also shows excellent rate capability, displaying a stable capacity of 381 mAhg(-1) at a current density of 8500 mAg(-1) (∼10C). A survey of published literature indicates that 833 mAhg(-1) is among the highest reversible capacities reported for a Sn-based NIB anode, while 381 mAhg(-1) represents the optimum fast charge value. HRTEM shows that Sn50Ge25Sb25 is a composite of 10-15 nm Sn and Sn-alloyed Ge nanocrystallites that are densely dispersed within an amorphous matrix. Comparing the microstructures of alloys where the capacity significantly exceeds the rule of mixtures prediction to those where it does not leads us to hypothesize that this new phenomenon originates from the Ge(Sn) that is able to sodiate beyond the 1:1 Na:Ge ratio reported for the pure element. Combined TOF-SIMS, EELS TEM, and FIB analysis demonstrates substantial Na segregation within the film near the current collector interface that is present as early as the second discharge, followed by cycling-induced delamination from the current collector.


ACS Nano | 2013

Reporting performance in organic photovoltaic devices.

Erik J. Luber; Jillian M. Buriak

Research into organic photovoltaics (OPVs) is rapidly growing worldwide because it offers a route to low temperature, inexpensive processing of lightweight, flexible solar cells that can be mass manufactured cheaply. Unlike silicon or other inorganic semiconductors (e.g., CdTe, CIGs), OPVs are complicated by the requirement of having multiple materials and layers that must be integrated to enable the cell to function. The enormous number of research hours required to optimize all aspects of OPVs and to integrate them successfully is typically boiled down to one number-the power conversion efficiency (PCE) of the device. The PCE is the value by which comparisons are routinely made when modifications are made to devices; new bulk heterojunction materials, electron- and hole-transport layers, electrodes, plasmonic additives, and many other new advances are incorporated into OPV devices and compared with one, or a series of, control device(s). The concern relates to the statistical significance of this all-important efficiency/PCE value: is the observed change or improvement in performance truly greater than experimental error? If it is not, then the field can and will be misled by improper reporting of efficiencies, and future research in OPVs could be frustrated and, ultimately, irreversibly damaged. In this Perspective, the dangers of, for instance, cherry-picking of data and poor descriptions of experimental procedures, are outlined, followed by a discussion of a real data set of OPV devices, and how a simple and easy statistical treatment can help to distinguish between results that are indistinguishable experimentally, and those that do appear to be different.


ACS Nano | 2013

Solution-Processed Zinc Phosphide (α-Zn3P2) Colloidal Semiconducting Nanocrystals for Thin Film Photovoltaic Applications

Erik J. Luber; Hosnay Mobarok; Jillian M. Buriak

Zinc phosphide (Zn3P2) is a promising earth-abundant material for thin film photovoltaic applications, due to strong optical absorption and near ideal band gap. In this work, crystalline zinc phosphide nanoparticles are synthesized using dimethylzinc and tri-n-octylphosphine as precursors. Transmission electron microscopy and X-ray diffraction data show that these nanoparticles have an average diameter of ∼8 nm and adopt the crystalline structure of tetragonal α-Zn3P2. The optical band gap is found to increase by 0.5 eV relative to bulk Zn3P2, while there is an asymmetric shift in the conduction and valence band levels. Utilizing layer-by-layer deposition of Zn3P2 nanoparticle films, heterojunction devices consisting of ITO/ZnO/Zn3P2/MoO3/Ag are fabricated and tested for photovoltaic performance. The devices are found to exhibit excellent rectification behavior (rectification ratio of 600) and strong photosensitivity (on/off ratio of ∼10(2)). X-ray photoelectron spectroscopy and ultraviolet photoemission spectroscopy analyses reveal the presence of a thin 1.5 nm phosphorus shell passivating the surface of the Zn3P2 nanoparticles. This shell is believed to form during the nanoparticle synthesis.


ACS Applied Materials & Interfaces | 2015

Oxygen Evolution Catalyzed by Nickel–Iron Oxide Nanocrystals with a Nonequilibrium Phase

Jeremy A. Bau; Erik J. Luber; Jillian M. Buriak

Mixed nickel-iron oxides are of great interest as electrocatalysts for the oxygen evolution reaction (OER), the kinetically challenging half-reaction required for the generation of hydrogen gas from water via electrolysis. Previously, we had reported the synthesis of single crystal, soluble nickel-iron oxide nanoparticles over a wide range of nickel:iron compositions, with a metastable cubic rock salt phase ([Ni,Fe]O) that can be isolated despite the low solubility of iron in cubic nickel oxide at ambient temperatures. Here, activity for OER was examined, catalyzed by these [Ni,Fe]O nanoparticles integrated with indium tin oxide (ITO) electrodes. Because the as-prepared [Ni,Fe]O nanoparticles are oleate-capped, the surface ligands needed to be removed to induce adherence to the ITO substrate, and to enable charge transfer and contact with water to enable OER catalysis. Two different approaches were taken to reduce or eliminate the coverage of oleate ligands in these films: UV irradiation (254 nm) and air plasma. UV irradiation proved to lead to better results in terms of stable and OER-active films at pH 13. Kinetic analysis revealed that the Tafel slopes of these nanoparticle [Ni,Fe]O OER electrodes were limited by the electrochemical surface area and were found to be within the range of 30 to 50 mV/decade. Across the four compositions of Ni:Fe studied, from 24:76 to 88:12, the observed overpotential at 10 mA/cm2 for the OER in basic conditions decreased from 0.47 to 0.30 V as the proportion of nickel increased from 24% to 88%.


Applied Physics Letters | 2009

Low temperature hydrogen desorption in MgAl thin films achieved by using a nanoscale Ta/Pd bilayer catalyst

H. Fritzsche; Colin Ophus; Chris T. Harrower; Erik J. Luber; David Mitlin

We used a nanoscale (5 nm Ta/5 nm Pd) bilayer catalyst to achieve remarkable desorption kinetics for thin films. Full hydrogen desorption occurred at 100 °C with a noticeable desorption even at room temperature. This is a significant improvement relative to the 175 °C needed to fully desorb an identical film with a single Pd layer acting as the catalyst. Neutron reflectometry confirmed that the Ta/Pd bilayer remained intact both after hydrogen absorption and following the hydrogen desorption. We used x-ray diffraction analysis to gather complementary information regarding the crystal structure of the as-synthesized, sorbed and desorbed film.


Chemical Communications | 2011

Effect of alloying magnesium with chromium and vanadium on hydrogenation kinetics studied with neutron reflectometry

Peter Kalisvaart; Erik J. Luber; H. Fritzsche; David Mitlin

The effect of chromium and vanadium alloying on the hydrogenation of a magnesium thin film is studied by neutron reflectometry. Immediate formation of a blocking MgD(2) layer is observed in pure Mg, however in the alloyed film deuteration is rapid and almost completely homogeneous.


Journal of Materials Chemistry | 2017

Sn–Bi–Sb alloys as anode materials for sodium ion batteries

W. Peter Kalisvaart; Brian C. Olsen; Erik J. Luber; David Mitlin; Jillian M. Buriak

In this work, the performance and electrochemical charge/discharge behavior of Sn–Bi–Sb alloy films were examined, as well as pure Sn, Bi, and Sb films, as anodes for sodium ion batteries (SIBs). Alloying was utilized as an approach to modify the morphology and active phases in an effort to improve the cycling stability of elemental anodes of Sn or Sb, while maintaining a high capacity. The films were prepared via sputtering, which enabled study of a broad swath of compositional space. The cycling performance of the Sb-rich compositions surpassed that of all other alloys tested as anodes for SIBs. The best performing alloy had a composition of 10 at% Sn, 10 at% Bi, and 80 at% Sb (called Sn10Bi10Sb80, here), and maintained 99% of its maximum capacity during cycling (621 mA h g−1) after 100 cycles. Stability of these anodes dropped as the quantity of Sb decreased; to contrast, Sn20Bi20Sb60, Sn25Bi25Sb50 and Sn33Bi33Sb33 were increasingly less stable as anodes in SIBs as the molar quantity of Sb in the films dropped to 60%, 50%, and 33%, respectively. The Sn10Bi10Sb80 electrode was found to possess a single phase as-deposited microstructure of Sn and Bi in substitutional solid solution with the Sb lattice and the sodiation sequence was found to be significantly different from pure Sb. Numerous possible mechanisms for the improvement in capacity retention were discussed, where modification and material response to internal stresses by changes in the Sb chemical potential and solid solution strengthening were found to be the most likely.


ACS Applied Materials & Interfaces | 2016

Role of Interfacial Layers in Organic Solar Cells: Energy Level Pinning versus Phase Segregation

Bing Cao; Xiaoming He; Christopher R. Fetterly; Brian C. Olsen; Erik J. Luber; Jillian M. Buriak

UNLABELLED Organic photovoltaics (OPVs) are assembled from a complex ensemble of layers of disparate materials, each playing a distinct role within the device. In this work, the role of the interface that bridges the transparent anode and the bulk heterojunction (BHJ) in an OPV device was investigated. The surface characteristics of the electrode interface affect the energy level alignment, phase segregation, and the local composition of the bulk heterojunction (BHJ), which is in close contact. The commonly used ITO/PEDOT:PSS electrode was tailored with a thin, low-band-gap polymer overlayer, called PBDTTPD-COOH, a variant of the established donor polymer, PBDTTPD. Three BHJs that were composed of a donor polymer and PC71BM, were examined, including the donor polymers PBDTTPD, PCDTBT, and PTB7, within the following OPV device stack: ITO/(interfacial layer or layers)/BHJ/LiF/Al/Mg. It was found that modification of the ITO/PEDOT:PSS electrode with PBDTTPD-COOH resulted in statistically significant increases of power conversion efficiency for the PBDTTPD- and PCDTBT-based donor polymer:PC71BM BHJs, but not for the PTB7:PC71BM BHJ. Ultraviolet photoelectron spectroscopy (UPS) enabled determination of the respective energy level diagrams for these three different polymers relative to the ITO/PEDOT:PSS/PBDTTPD-COOH electrode, and revealed no injection barrier in all three polymer/substrate pairs. The observed differences of efficiency were not, therefore, electronic in origin. ToF-SIMS depth profiling and detailed experiments to determine surface energies strongly suggested that the greatest factor influencing device performance was a significant change of the local composition of the BHJ at this interface. When favorable accumulation of the donor polymer at the PEDOT PSS/interfacial layer was observed, the result was higher OPV device efficiencies. These results suggest that for each BHJ, the surface energies of the electrodes need to be carefully considered, as they will influence the local composition of the BHJ and resulting device performance.


ACS Nano | 2015

Nanoscale Plasmonic Stamp Lithography on Silicon

Fenglin Liu; Erik J. Luber; Lawrence A. Huck; Brian C. Olsen; Jillian M. Buriak

Nanoscale lithography on silicon is of interest for applications ranging from computer chip design to tissue interfacing. Block copolymer-based self-assembly, also called directed self-assembly (DSA) within the semiconductor industry, can produce a variety of complex nanopatterns on silicon, but these polymeric films typically require transformation into functional materials. Here we demonstrate how gold nanopatterns, produced via block copolymer self-assembly, can be incorporated into an optically transparent flexible PDMS stamp, termed a plasmonic stamp, and used to directly functionalize silicon surfaces on a sub-100 nm scale. We propose that the high intensity electric fields that result from the localized surface plasmons of the gold nanoparticles in the plasmonic stamps upon illumination with low intensity green light, lead to generation of electron-hole pairs in the silicon that drive spatially localized hydrosilylation. This approach demonstrates how localized surface plasmons can be used to enable functionalization of technologically relevant surfaces with nanoscale control.


Nanotechnology | 2008

Tailoring the microstructure and surface morphology of metal thin films for nano-electro-mechanical systems applications.

Erik J. Luber; R Mohammadi; Colin Ophus; Zonghoon Lee; Nathan Nelson-Fitzpatrick; K. Westra; Stephane Evoy; U Dahmen; Velimir Radmilovic; David Mitlin

Metallic structural components for micro-electro-mechanical/nano-electro-mechanical systems (MEMS/NEMS) are promising alternatives to silicon-based materials since they are electrically conductive, optically reflective and ductile. Polycrystalline mono-metallic films typically exhibit low strength and hardness, high surface roughness, and significant residual stress, making them unusable for NEMS. In this study we demonstrate how to overcome these limitations by co-sputtering Ni-Mo. Detailed investigation of the Ni-Mo system using transmission electron microscopy and high-resolution transmission electron microscopy (TEM/HRTEM), x-ray diffraction (XRD), nanoindentation, and atomic force microscopy (AFM) reveals the presence of an amorphous-nanocrystalline microstructure which exhibits enhanced hardness, metallic conductivity, and sub-nanometer root mean square (RMS) roughness. Uncurled NEMS cantilevers with MHz resonant frequencies and quality factors ranging from 200-900 are fabricated from amorphous Ni-Mo. Using a sub-regular solution model it is shown that the electrical conductivity of Ni-Mo is in excellent agreement with Bhatias structural model of electrical resistivity in binary alloys. Using a Langevin-type stochastic rate equation the structural evolution of amorphous Ni-Mo is modeled; it is shown that the growth instability due to the competing processes of surface diffusion and self-shadowing is heavily damped out due to the high thermal energies of sputtering, resulting in extremely smooth films.

Collaboration


Dive into the Erik J. Luber's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Fritzsche

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Zonghoon Lee

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge