Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik M. Ullian is active.

Publication


Featured researches published by Erik M. Ullian.


Cell | 2005

Thrombospondins Are Astrocyte-Secreted Proteins that Promote CNS Synaptogenesis

Karen S. Christopherson; Erik M. Ullian; C. Stokes; Christine E. Mullowney; Johannes W. Hell; Azin Agah; Jack Lawler; Deane F. Mosher; Paul Bornstein; Ben A. Barres

The establishment of neural circuitry requires vast numbers of synapses to be generated during a specific window of brain development, but it is not known why the developing mammalian brain has a much greater capacity to generate new synapses than the adult brain. Here we report that immature but not mature astrocytes express thrombospondins (TSPs)-1 and -2 and that these TSPs promote CNS synaptogenesis in vitro and in vivo. TSPs induce ultrastructurally normal synapses that are presynaptically active but postsynaptically silent and work in concert with other, as yet unidentified, astrocyte-derived signals to produce functional synapses. These studies identify TSPs as CNS synaptogenic proteins, provide evidence that astrocytes are important contributors to synaptogenesis within the developing CNS, and suggest that TSP-1 and -2 act as a permissive switch that times CNS synaptogenesis by enabling neuronal molecules to assemble into synapses within a specific window of CNS development.


The Journal of Neuroscience | 2008

Conditional Loss of Dicer Disrupts Cellular and Tissue Morphogenesis in the Cortex and Hippocampus

Tigwa H. Davis; Trinna L. Cuellar; Selina M. Koch; Allison J. Barker; Brian D. Harfe; Michael T. McManus; Erik M. Ullian

To investigate the role of Dicer and microRNAs in the mammalian CNS, we used mice in which the second RNase III domain of Dicer was conditionally floxed. Conditional Dicer mice were bred with mice expressing an α-calmodulin kinase II Cre to selectively inactivate Dicer in excitatory forebrain neurons in vivo. Inactivation of Dicer results in an array of phenotypes including microcephaly, reduced dendritic branch elaboration, and large increases in dendritic spine length with no concomitant change in spine density. Microcephaly is likely caused by a 5.5-fold increase in early postnatal apoptosis in these animals as determined by active caspase-3 and TUNEL (terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling) staining in the cortex. Loss of Dicer function had no measurable effect on cortical lamination as determined by in situ hybridization, suggesting that microcephaly is not caused by defects in neuronal migration. Together, these results illustrate the in vivo significance of Dicer and miRNAs in the mammalian CNS and provide additional support for previous in vitro studies indicating that misregulation of this pathway may result in gross abnormalities in cell number and function that may contribute to a variety of neurological disorders.


Glia | 2004

Role for Glia in Synaptogenesis

Erik M. Ullian; Karen S. Christopherson; Ben A. Barres

Nearly one‐half of the cells in a human brain are astrocytes, but the function of these little cells remains a great mystery. Astrocytes form an intimate association with synapses throughout the adult CNS, where they help regulate ion and neurotransmitter concentrations. Recent in vitro studies, however, have found that astrocytes also exert powerful control over the number of CNS synapses that form, are essential for postsynaptic function, and are required for synaptic stability and maintenance. Moreover, recent studies increasingly implicate astrocytes in vivo as participants in activity‐dependent structural and functional synaptic changes throughout the nervous system. Taken together, these data force us to rethink the role of glia. We propose that astrocytes should not be viewed primarily as support cells, but rather as cells that actively control the structural and functional plasticity of synapses in developing and adult organisms.


Genes & Development | 2012

Astrocytes and disease: a neurodevelopmental perspective

Anna V. Molofsky; Robert Krenick; Erik M. Ullian; Hui-Hsin Tsai; Benjamin Deneen; William D. Richardson; Ben A. Barres; David H. Rowitch

Astrocytes are no longer seen as a homogenous population of cells. In fact, recent studies indicate that astrocytes are morphologically and functionally diverse and play critical roles in neurodevelopmental diseases such as Rett syndrome and fragile X mental retardation. This review summarizes recent advances in astrocyte development, including the role of neural tube patterning in specification and developmental functions of astrocytes during synaptogenesis. We propose here that a precise understanding of astrocyte development is critical to defining heterogeneity and could lead advances in understanding and treating a variety of neuropsychiatric diseases.


Neuron | 2001

Differential Control of Clustering of the Sodium Channels Nav1.2 and Nav1.6 at Developing CNS Nodes of Ranvier

Miriam R. Kaplan; Min Hee Cho; Erik M. Ullian; Lori L. Isom; S. Rock Levinson; Ben A. Barres

Na(v)1.6 is the main sodium channel isoform at adult nodes of Ranvier. Here, we show that Na(v)1.2 and its beta2 subunit, but not Na(v)1.6 or beta1, are clustered in developing central nervous system nodes and that clustering of Na(v)1.2 and Na(v)1.6 is differentially controlled. Oligodendrocyte-conditioned medium is sufficient to induce clustering of Na(v)1.2 alpha and beta2 subunits along central nervous system axons in vitro. This clustering is regulated by electrical activity and requires an intact actin cytoskeleton and synthesis of a non-sodium channel protein. Neither soluble- or contact-mediated glial signals induce clustering of Na(v)1.6 or beta1 in a nonmyelinating culture system. These data reveal that the sequential clustering of Na(v)1.2 and Na(v)1.6 channels is differentially controlled and suggest that myelination induces Na(v)1.6 clustering.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Dicer loss in striatal neurons produces behavioral and neuroanatomical phenotypes in the absence of neurodegeneration

Trinna L. Cuellar; Tigwa H. Davis; Peter T. Nelson; Gabriel B. Loeb; Brian D. Harfe; Erik M. Ullian; Michael T. McManus

MicroRNAs (miRNAs) are small noncoding RNAs that can act to repress target mRNAs by suppressing translation and/or reducing mRNA stability. Although it is clear that miRNAs and Dicer, an RNase III enzyme that is central to the production of mature miRNAs, have a role in the early development of neurons, their roles in the postmitotic neuron in vivo are largely unknown. To determine the roles of Dicer in neurons, we ablated Dicer in dopaminoceptive neurons. Mice that have lost Dicer in these cells display a range of phenotypes including ataxia, front and hind limb clasping, reduced brain size, and smaller neurons. Surprisingly, dopaminoceptive neurons without Dicer survive over the life of the animal. The lack of profound cell death contrasts with other mouse models in which Dicer has been ablated. These studies highlight the complicated nature of Dicer ablation in the brain and provide a useful mouse model for studying dopaminoceptive neuron function.


Neuron | 2008

Architecture and Activity-Mediated Refinement of Axonal Projections from a Mosaic of Genetically Identified Retinal Ganglion Cells

Andrew D. Huberman; Mihai Manu; Selina M. Koch; Michael W. Susman; Amanda Brosius Lutz; Erik M. Ullian; Stephen A. Baccus; Ben A. Barres

Our understanding of how mammalian sensory circuits are organized and develop has long been hindered by the lack of genetic markers of neurons with discrete functions. Here, we report a transgenic mouse selectively expressing GFP in a complete mosaic of transient OFF-alpha retinal ganglion cells (tOFF-alphaRGCs). This enabled us to relate the mosaic spacing, dendritic anatomy, and electrophysiology of these RGCs to their complete map of projections in the brain. We find that tOFF-alphaRGCs project exclusively to the superior colliculus (SC) and dorsal lateral geniculate nucleus and are restricted to a specific laminar depth within each of these targets. The axons of tOFF-alphaRGC are also organized into columns in the SC. Both laminar and columnar specificity develop through axon refinement. Disruption of cholinergic retinal waves prevents the emergence of columnar- but not laminar-specific tOFF-alphaRGC connections. Our findings reveal that in a genetically identified sensory map, spontaneous activity promotes synaptic specificity by segregating axons arising from RGCs of the same subtype.


The Journal of Neuroscience | 2006

Neuronal Pentraxins Mediate Synaptic Refinement in the Developing Visual System

Lisa Bjartmar; Andrew D. Huberman; Erik M. Ullian; René C. Rentería; Xiaoquin Liu; Weifeng Xu; Jennifer Prezioso; Michael W. Susman; David Stellwagen; C. Stokes; Richard W. Cho; Paul F. Worley; Robert C. Malenka; Sherry L. Ball; Neal S. Peachey; David R. Copenhagen; Barbara Chapman; Masaru Nakamoto; Ben A. Barres; Mark S. Perin

Neuronal pentraxins (NPs) define a family of proteins that are homologous to C-reactive and acute-phase proteins in the immune system and have been hypothesized to be involved in activity-dependent synaptic plasticity. To investigate the role of NPs in vivo, we generated mice that lack one, two, or all three NPs. NP1/2 knock-out mice exhibited defects in the segregation of eye-specific retinal ganglion cell (RGC) projections to the dorsal lateral geniculate nucleus, a process that involves activity-dependent synapse formation and elimination. Retinas from mice lacking NP1 and NP2 had cholinergically driven waves of activity that occurred at a frequency similar to that of wild-type mice, but several other parameters of retinal activity were altered. RGCs cultured from these mice exhibited a significant delay in functional maturation of glutamatergic synapses. Other developmental processes, such as pathfinding of RGCs at the optic chiasm and hippocampal long-term potentiation and long-term depression, appeared normal in NP-deficient mice. These data indicate that NPs are necessary for early synaptic refinements in the mammalian retina and dorsal lateral geniculate nucleus. We speculate that NPs exert their effects through mechanisms that parallel the known role of short pentraxins outside the CNS.


Molecular and Cellular Neuroscience | 2004

Schwann cells and astrocytes induce synapse formation by spinal motor neurons in culture

Erik M. Ullian; B.T Harris; A Wu; Jonah R. Chan; Ben A. Barres

Glia constitute 90% of cells in the human nervous system, but relatively little is known about their functions. We have been focusing on the potential synaptic roles of glia in the CNS. We recently found that astrocytes increase the number of mature, functional synapses on retinal ganglion cells (RGCs) by sevenfold and are required for synaptic maintenance in vitro. These observations raised the question of whether glia similarly enhance synapse formation by other neuron types. Here we have investigated whether highly purified motor neurons isolated from developing rat spinal cords are able to form synapses in the absence of glia or whether glia similarly enhance synapse number. We show that spinal motor neurons (SMNs) form few synapses unless Schwann cells or astrocytes are present. Schwann cells increase the number of functional synapses by ninefold as measured by immunostaining, and increase spontaneous synaptic activity by several hundredfold. Surprisingly, the synapses formed between spinal motor neurons were primarily glutamatergic, as they could be blocked by CNQX. This synapse-promoting activity is not mediated by direct glial-neuronal cell contact but rather is mediated by secreted molecule(s) from the Schwann cells, as we previously found for astrocytes. Interestingly, the synapse-promoting activity from astrocytes and Schwann cells was functionally similar: Schwann cells also promoted synapse formation between retinal ganglion cells, and astrocytes promoted synapse formation between spinal motor neurons. These studies show that both astrocytes and Schwann cells strongly promote synapse formation between spinal motor neurons and demonstrate that glial regulation of synaptogenesis extends to other neuron types.


Molecular and Cellular Neuroscience | 2004

Invulnerability of retinal ganglion cells to NMDA excitotoxicity.

Erik M. Ullian; W.B Barkis; S Chen; J.S Diamond; Ben A. Barres

NMDA excitotoxicity has been proposed to mediate the death of retinal ganglion cells (RGCs) in glaucoma and ischemia. Here, we reexamine the effects of glutamate and NMDA on rat RGCs in vitro and in situ. We show that highly purified RGCs express NR1 and NR2 receptor subunits by Western blotting and immunostaining, and functional NMDA receptor channels by whole-cell patch-clamp recording. Nevertheless, high concentrations of glutamate or NMDA failed to induce the death of purified RGCs, even after prolonged exposure for 24 h. RGCs co-cultured together with ephrins, astrocytes, or mixed retinal cells were similarly invulnerable to glutamate and NMDA, though their NMDA currents were 4-fold larger. In contrast, even a short exposure to glutamate or NMDA induced the rapid and profound excitotoxic death of most hippocampal neurons in culture. To determine whether RGCs in an intact retina are vulnerable to excitotoxicity, we retrogradely labeled RGCs in vivo using fluorogold and exposed acutely isolated intact retinas to high concentrations of glutamate or NMDA. This produced a substantial and rapid loss of amacrine cells; however, RGCs were not affected. Nonetheless, RGCs expressed NMDA currents in situ that were larger than those reported for amacrine cells. Interestingly, the NMDA receptors expressed by RGCs were extrasynaptically localized both in vitro and in situ. These results indicate that RGCs in vitro and in situ are relatively invulnerable to glutamate and NMDA excitotoxicity compared to amacrine cells, and indicate that important, as yet unidentified, determinants downstream of NMDA receptors control vulnerability to excitotoxicity.

Collaboration


Dive into the Erik M. Ullian's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Krencik

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dang Q. Dao

University of California

View shared research outputs
Top Co-Authors

Avatar

Jonah R. Chan

University of California

View shared research outputs
Top Co-Authors

Avatar

Selina M. Koch

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yvonne Ou

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge