Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik Rosen is active.

Publication


Featured researches published by Erik Rosen.


Accident Analysis & Prevention | 2009

Pedestrian fatality risk as a function of car impact speed

Erik Rosen; Ulrich Sander

Knowledge of the amount of violence tolerated by the human body is essential when developing and implementing pedestrian safety strategies. When estimating the potential benefits of new countermeasures, the pedestrian fatality risk as a function of impact speed is of particular importance. Although this function has been analysed previously, we state that a proper understanding does not exist. Based on the largest in-depth, pedestrian accident study undertaken to date, we derive an improved risk function for adult pedestrians hit by the front of passenger cars. Our results show far lower fatality risks than generally reported in the traffic safety literature. This discrepancy is primarily explained by sample bias towards severe injury accidents in earlier studies. Nevertheless, a strong dependence on impact speed is found, with the fatality risk at 50 km/h being more than twice as high as the risk at 40 km/h and more than five times higher than the risk at 30 km/h. Our findings should have important implications for the development of pedestrian accident countermeasures worldwide. In particular, the scope of future pedestrian safety policies and research should be broadened to include accidents with impact speeds exceeding 50 km/h.


Accident Analysis & Prevention | 2011

Literature review of pedestrian fatality risk as a function of car impact speed

Erik Rosen; Helena Stigson; Ulrich Sander

The aim of this review was to evaluate all studies of pedestrian fatality risk as a function of car impact speed. Relevant papers were primarily investigated with respect to data sampling procedures and methods for statistical analysis. It was uniformly reported that fatality risk increased monotonically with car impact speed. However, the absolute risk estimates varied considerably. Without exceptions, papers written before 2000 were based on direct analyses of data that had a large bias towards severe and fatal injuries. The consequence was to overestimate the fatality risks. We also found more recent research based on less biased data or adjusted for bias. While still showing a steep increase of risk with impact speed, these later papers provided substantially lower risk estimates than had been previously reported.


Accident Analysis & Prevention | 2010

Pedestrian injury mitigation by autonomous braking

Erik Rosen; Jan-Erik Källhammer; Dick Eriksson; Matthias Nentwich; Rikard Fredriksson; Kersha Smith

The objective of this study was to calculate the potential effectiveness of a pedestrian injury mitigation system that autonomously brakes the car prior to impact. The effectiveness was measured by the reduction of fatally and severely injured pedestrians. The database from the German In-Depth Accident Study (GIDAS) was queried for pedestrians hit by the front of cars from 1999 to 2007. Case by case information on vehicle and pedestrian velocities and trajectories were analysed to estimate the field of view needed for a vehicle-based sensor to detect the pedestrians one second prior to the crash. The pre-impact braking system was assumed to activate the brakes one second prior to crash and to provide a braking deceleration up to the limit of the road surface conditions, but never to exceed 0.6 g. New impact speeds were then calculated for pedestrians that would have been detected by the sensor. These calculations assumed that all pedestrians who were within a given field of view but not obstructed by surrounding objects would be detected. The changes in fatality and severe injury risks were quantified using risk curves derived by logistic regression of the accident data. Summing the risks for all pedestrians, relationships between mitigation effectiveness, sensor field of view, braking initiation time, and deceleration were established. The study documents that the effectiveness at reducing fatally (severely) injured pedestrians in frontal collisions with cars reached 40% (27%) at a field of view of 40 degrees. Increasing the field of view further led to only marginal improvements in effectiveness.


Traffic Injury Prevention | 2009

Real-Life Fatal Outcome in Car-to-Car Near-Side Impacts—Implications for Improved Protection Considering Age and Crash Severity

Cecilia Sunnevång; Erik Rosen; Ola Boström

Objective: Recent studies have shown that current side airbags, protecting head and chest, are saving lives in near-side impacts (Kahane 2007; McCartt and Kyrychenko 2007). The aim of this study was to analyze NASS/CDS real-life data on fatal trauma in near-side car-to-car crashes, stratified by age into non-senior and senior occupants. Furthermore, a hypothetical model explaining side airbag effectiveness as a function of lateral delta-v was presented. The model together with the field data was then used to demonstrate further enhancement of side airbag restraint performance. Method: Weighted NASS/CDS data from 1994 to 2006 for front seat occupants in near-side car-to-car impacts was used to calculate the exposure, incidence, and risk of fatal trauma with respect to lateral delta-v. The dataset was also divided into non-senior (10–59 years) and senior (age ≥ 60 years) occupants. The hypothetical model was created to adjust the NASS/CDS data to represent a car fleet fully equipped with current side airbag protection. The model was then used to evaluate the increase in effectiveness of improved side airbag protection achieved by increasing the lateral delta-v in the range where the airbag have most mitigating effect, increasing the airbag protection level within the delta-v range currently tested, and a combination of the two approaches. Results: From the NASS/CDS data, the median delta-v for fatal injury was 37 km/h for the total sample. When stratified with respect to age, the median delta-v for fatal injury was 41 km/h for non-seniors and 28 km/h for senior occupants. The exposures for both age groups were similar. However, the fatal incidence showed a difference in delta-v range between non-senior and senior occupants. Applying the airbag model increased the median delta-v to 40 km/h for the total sample and 47 and 30 km/h for non-seniors and seniors, respectively. Conclusions: Current side airbag systems offer very good protection for non-senior occupants up to delta-v 40 km/h. Though still high, the protection for senior occupants is lower. To enhance side airbag protection, the side airbag performance should be maximized where the fatal incidence is high. Therefore, to further reduce non-senior fatalities, the test speed should be increased. To further reduce senior fatalities, the protection level within severities currently tested should be increased. A combination of the two approaches would result in about a 40 percent increase of the side airbag effectiveness.


Accident Analysis & Prevention | 2016

Pedestrian injury risk and the effect of age

Tobias Niebuhr; Mirko Junge; Erik Rosen

Older adults and pedestrians both represent especially vulnerable groups in traffic. In the literature, hazards are usually described by the corresponding injury risks of a collision. This paper investigates the MAIS3+F risk (the risk of sustaining at least one injury of AIS 3 severity or higher, or fatal injury) for pedestrians in full-frontal pedestrian-to-passenger car collisions. Using some assumptions, a model-based approach to injury risk, allowing for the specification of individual injury risk parameters for individuals, is presented. To balance model accuracy and sample size, the GIDAS (German In-depth Accident Study) data set is divided into three age groups; children (0-14); adults (15-60); and older adults (older than 60). For each group, individual risk curves are computed. Afterwards, the curves are re-aggregated to the overall risk function. The derived model addresses the influence of age on the outcome of pedestrian-to-car accidents. The results show that older people compared with younger people have a higher MAIS3+F injury risk at all collision speeds. The injury risk for children behaves surprisingly. Compared to other age groups, their MAIS3+F injury risk is lower at lower collision speeds, but substantially higher once a threshold has been exceeded. The resulting injury risk curve obtained by re-aggregation looks surprisingly similar to the frequently used logistic regression function computed for the overall injury risk. However, for homogenous subgroups - such as the three age groups - logistic regression describes the typical risk behavior less accurately than the introduced model-based approach. Since the effect of demographic change on traffic safety is greater nowadays, there is a need to incorporate age into established models. Thus far, this is one of the first studies incorporating traffic participant age to an explicit risk function. The presented approach can be especially useful for the modeling and prediction of risks, and for the evaluation of advanced driver assistance systems.


Accident Analysis & Prevention | 2014

Pedestrian crossing situations: Quantification of comfort boundaries to guide intervention timing

Nils Lubbe; Erik Rosen

INTRODUCTION Technical systems that warn or brake for vehicle-pedestrian encounters reduce injuries more effectively the earlier an intervention is initiated. However, premature intervention can irritate drivers, leading to system deactivation and, consequently, no injury reduction whatsoever. It has been proposed that no intervention should be initiated as long as attentive drivers are within their comfort zones. This study aims at quantifying driver comfort boundaries for pedestrian crossing situations to offer guidance for the appropriate timing of interventions. METHODS Sixty two volunteers drove through an intersection on a test track at 30 and 50km/h. A pedestrian dummy was launched from behind an obstruction towards the driving path of the approaching car. Brake onset indicated discomfort. Time to collision (TTC), longitudinal and lateral distance were measured at brake onset. RESULTS TTC was independent of driving speed ranging from 2.1 to 4.3s with a median of 3.2s. Longitudinal distance ranged from 19 to 48 meters with an apparent difference between driving speeds. Lateral distances differed slightly, but significantly between driving speeds. The median was 3.1m (3.2m for 30km/h and 2.9m for 50km/h) and values ranged from 1.9 to 4.1m. Lateral distance in seconds ranged from 1.9 to 4.3s with a median value of 3.1s (3.2s for 30km/h and 3.0s for 50km/h). DISCUSSION TTC was independent of driving speed, trial order and volunteer age. It might be considered suitable to intervene in situations where, for example, 90% of drivers have exceeded their comfort boundary, i.e. when drivers have already initiated braking. This percentile value translates to intervention at a TTC of 2.5s (95% confidence 2.4-2.7s). The study was limited to Swedish nationals, fully aware drivers, and two driving speeds, but did not investigate behavioural changes due to system interaction. CONCLUSION This study showed that TTC at brake onset was a suitable measure for the quantification of driver comfort boundaries in pedestrian crossing situations. All drivers applied their brakes prior to 2.1s TTC.


Accident Analysis & Prevention | 2010

Priorities of pedestrian protection--a real-life study of severe injuries and car sources.

Rikard Fredriksson; Erik Rosen; Anders Kullgren


2012 IRCOBI ConferenceInternational Research Council on Biomechanics of Injury (IRCOBI)Collision Research & Analysis, Inc.JP Research, Inc.Nissan Motor Co Ltd, JapanScience Foundation IrelandToyota | 2012

Priorities for bicyclist protection in car impacts: a real life study of severe injuries and car sources

Rikard Fredriksson; Erik Rosen


Annals of advances in automotive medicine / Annual Scientific Conference ... Association for the Advancement of Automotive Medicine. Association for the Advancement of Automotive Medicine. Scientific Conference | 2009

Rear seat occupant thorax protection in near side impacts.

Katarina Bohman; Erik Rosen; Cecilia Sunnevång; Ola Boström


Annals of advances in automotive medicine / Annual Scientific Conference ... Association for the Advancement of Automotive Medicine. Association for the Advancement of Automotive Medicine. Scientific Conference | 2012

Pedestrian Injuries by Source: Serious and Disabling Injuries in US and European Cases

Ann Mallory; Rikard Fredriksson; Erik Rosen; Bruce R. Donnelly

Collaboration


Dive into the Erik Rosen's collaboration.

Researchain Logo
Decentralizing Knowledge