Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik S. Carlson is active.

Publication


Featured researches published by Erik S. Carlson.


Advances in Nutrition | 2011

The Role of Iron in Learning and Memory

Stephanie J. B. Fretham; Erik S. Carlson; Michael K. Georgieff

Iron deficiency (ID) is the most common nutrient deficiency, affecting 2 billion people and 30% of pregnant women and their offspring. Early life ID affects at least 3 major neurobehavioral domains, including speed of processing, affect, and learning and memory, the latter being particularly prominent. The learning and memory deficits occur while the infants are iron deficient and persist despite iron repletion. The neural mechanisms underlying the short- and long-term deficits are being elucidated. Early ID alters the transcriptome, metabolome, structure, intracellular signaling pathways, and electrophysiology of the developing hippocampus, the brain region responsible for recognition learning and memory. Until recently, it was unclear whether these effects are directly due to a lack of iron interacting with important transcriptional, translational, or post-translational processes or to indirect effects such as hypoxia due to anemia or stress. Nonanemic genetic mouse models generated by conditionally altering expression of iron transport proteins specifically in hippocampal neurons in late gestation have led to a greater understanding of irons role in learning and memory. The learning deficits in adulthood likely result from interactions between direct and indirect effects that contribute to abnormal hippocampal structure and plasticity.


Journal of Nutrition | 2009

Iron Is Essential for Neuron Development and Memory Function in Mouse Hippocampus

Erik S. Carlson; Ivan Tkáč; Rhamy Magid; Michael B. O'Connor; Nancy C. Andrews; Timothy Schallert; Hiromi Gunshin; Michael K. Georgieff; Anna Petryk

Iron deficiency (ID) is the most prevalent micronutrient deficiency in the world and it affects neurobehavioral outcome. It is unclear whether the effect of dietary ID on the brain is due to the lack of neuronal iron or from other processes occurring in conjunction with ID (e.g. hypoxia due to anemia). We delineated the role of murine Slc11a2 [divalent metal ion transporter-1 (DMT-1)] in hippocampal neuronal iron uptake during development and memory formation. Camk2a gene promoter-driven cre recombinase (Cre) transgene (Camk2a-Cre) mice were mated with Slc11a2 flox/flox mice to obtain nonanemic Slc11a2(hipp/hipp) (double mutant, hippocampal neuron-specific knockout of Slc11a2(hipp/hipp)) mice, the first conditionally targeted model of iron uptake in the brain. Slc11a2(hipp/hipp) mice had lower hippocampal iron content; altered developmental expression of genes involved in iron homeostasis, energy metabolism, and dendrite morphogenesis; reductions in markers for energy metabolism and glutamatergic neurotransmission on magnetic resonance spectroscopy; and altered pyramidal neuron dendrite morphology in area 1 of Ammons Horn in the hippocampus. Slc11a2(hipp/hipp) mice did not reach the criterion on a difficult spatial navigation test but were able to learn a spatial navigation task on an easier version of the Morris water maze (MWM). Learning of the visual cued task did not differ between the Slc11a2(WT/WT) and Slc11a2(hipp/hipp) mice. Slc11a2(WT/WT) mice had upregulation of genes involved in iron uptake and metabolism in response to MWM training, and Slc11a2(hipp/hipp) mice had differential expression of these genes compared with Slc11a2(WT/WT) mice. Neuronal iron uptake by DMT-1 is essential for normal hippocampal neuronal development and Slc11a2 expression is induced by spatial memory training. Deletion of Slc11a2 disrupts hippocampal neuronal development and spatial memory behavior.


Pediatric Research | 2009

Long-term reduction of hippocampal brain-derived neurotrophic factor activity after fetal-neonatal iron deficiency in adult rats.

Phu V. Tran; Stephanie J. B. Fretham; Erik S. Carlson; Michael K. Georgieff

Fetal-neonatal iron deficiency acutely alters hippocampal biochemistry, neural morphology, and electrophysiology accompanied by a downregulation of brain-derived neurotrophic factor (BDNF). These changes provide a cellular and molecular basis for observed short-term learning and memory impairments. However, the etiology of residual, long-term hippocampal neurotransmission abnormalities and learning impairments after treatment remain unclear. Because BDNF modulates learning and memory, we assessed its expression in 65-d-old formerly iron deficient (FID) male rats that had been iron deficient during the fetal-neonatal period and treated with iron since postnatal day 7. BDNF-III and -IV mRNAs and BDNF protein expression remained down-regulated in FID rats when compared with the always iron-sufficient rats. Expressions of BDNF activity-dependent downstream targets (3-hydroxy-3-methylglutaryl CoA reductase and immediate early genes c-fos, early growth response gene 1 and 2) were reduced in FID rats. In turn, hippocampal expressions of direct targets of early-growth response genes, including hypoxia-inducible factor 1, dual-specificity phosphatase 4, IGF 2, and myelin basic protein were also diminished in FID rats. Collectively, fetal-neonatal iron deficiency lowers hippocampal BDNF expression and function beyond the period of iron deficiency. These findings may underlie the persistence of learning deficits seen after fetal-neonatal iron deficiency.


Developmental Neuroscience | 2010

Gestational and Neonatal Iron Deficiency Alters Apical Dendrite Structure of CA1 Pyramidal Neurons in Adult Rat Hippocampus

Katyarina E. Brunette; Phu V. Tran; Jane D. Wobken; Erik S. Carlson; Michael K. Georgieff

The hippocampus develops rapidly during the late fetal and early postnatal periods. Fetal/neonatal iron deficiency anemia (IDA) alters the genomic expression, neurometabolism and electrophysiology of the hippocampus during the period of IDA and, strikingly, in adulthood despite neonatal iron treatment. To determine how early IDA affects the structural development of the apical dendrite arbor in hippocampal area CA1 in the offspring, pregnant rat dams were given an iron-deficient (ID) diet between gestational day 2 and postnatal day (P) 7 followed by rescue with an iron-sufficient (IS) diet. Apical dendrite morphology in hippocampus area CA1 was assessed at P15, P30 and P70 by Scholl analysis of Golgi-Cox-stained neurons. Messenger RNA levels of nine cytoplasmic and transmembrane proteins that are critical for dendrite growth were analyzed at P7, P15, P30 and P65 by quantitative real-time polymerase chain reaction. The ID group had reduced transcript levels of proteins that modify actin and tubulin dynamics [e.g. cofilin-1 (Cfl-1), profilin-1 (Pfn-1), and profilin-2 (Pfn-2)] at P7, followed at P15 by a proximal shift in peak branching, thinner third-generation dendritic branches and smaller-diameter spine heads. At P30, iron treatment since P7 resulted in recovery of all transcripts and structural components except for a continued proximal shift in peak branching. Nevertheless, at P65–P70, the formerly ID group showed a 32% reduction in 9 mRNA transcripts, including Cfl-1 and Pfn-1 and Pfn-2, accompanied by 25% fewer branches, that were also proximally shifted. These alterations may be due to early-life programming of genes important for structural plasticity during adulthood and may contribute to the abnormal long-term electrophysiology and recognition memory behavior that follows early iron deficiency.


Journal of Nutrition | 2008

Early-Life Iron Deficiency Anemia Alters Neurotrophic Factor Expression and Hippocampal Neuron Differentiation in Male Rats

Phu V. Tran; Erik S. Carlson; Stephanie J. B. Fretham; Michael K. Georgieff

Fetal-neonatal iron deficiency alters hippocampal neuronal morphology, reduces its volume, and is associated with acute and long-term learning impairments. However, neither the effects of early-life iron deficiency anemia on growth, differentiation, and survival of hippocampal neurons nor regulation of the neurotrophic factors that mediate these processes has been investigated. We compared hippocampal expression of neurotrophic factors in male rats made iron deficient (ID) from gestational d 2 to postnatal d (P) 7 to iron-sufficient controls at P7, 15, and 30 with quantitative RT-PCR, Western analysis, and immunohistology. Iron deficiency downregulated brain-derived neurotrophic factor (BDNF) expression in the hippocampus without compensatory upregulation of its specific receptor, tyrosine-receptor kinase B. Consistent with low overall BDNF activity, we found lower expression of early-growth response gene-1 and -2, transcriptional targets of BDNF signaling. Doublecortin expression, a marker of differentiating neurons, was reduced during peak iron deficiency, suggesting impaired neuronal differentiation in the ID hippocampus. In contrast, iron deficiency upregulated hippocampal nerve growth factor, epidermal growth factor, and glial-derived neurotrophic factor accompanied by an increase in neurotrophic receptor p75 expression. Our findings suggest that fetal-neonatal iron deficiency lowers BDNF function and impairs neuronal differentiation in the hippocampus.


Hippocampus | 2012

Temporal manipulation of transferrin-receptor-1-dependent iron uptake identifies a sensitive period in mouse hippocampal neurodevelopment.

Stephanie J. B. Fretham; Erik S. Carlson; Jane D. Wobken; Phu V. Tran; Anna Petryk; Michael K. Georgieff

Iron is a necessary substrate for neuronal function throughout the lifespan, but particularly during development. Early life iron deficiency (ID) in humans (late gestation through 2–3 yr) results in persistent cognitive and behavioral abnormalities despite iron repletion. Animal models of early life ID generated using maternal dietary iron restriction also demonstrate persistent learning and memory deficits, suggesting a critical requirement for iron during hippocampal development. Precise definition of the temporal window for this requirement has been elusive due to anemia and total body and brain ID inherent to previous dietary restriction models. To circumvent these confounds, we developed transgenic mice that express tetracycline transactivator regulated, dominant negative transferrin receptor (DNTfR1) in hippocampal neurons, disrupting TfR1 mediated iron uptake specifically in CA1 pyramidal neurons. Normal iron status was restored by doxycycline administration. We manipulated the duration of ID using this inducible model to examine long‐term effects of early ID on Morris water maze learning, CA1 apical dendrite structure, and defining factors of critical periods including parvalbmin (PV) expression, perineuronal nets (PNN), and brain‐derived neurotrophic factor (BDNF) expression. Ongoing ID impaired spatial memory and resulted in disorganized apical dendrite structure accompanied by altered PV and PNN expression and reduced BDNF levels. Iron repletion at P21, near the end of hippocampal dendritogenesis, restored spatial memory, dendrite structure, and critical period markers in adult mice. However, mice that remained hippocampally iron deficient until P42 continued to have spatial memory deficits, impaired CA1 apical dendrite structure, and persistent alterations in PV and PNN expression and reduced BDNF despite iron repletion. Together, these findings demonstrate that hippocampal iron availability is necessary between P21 and P42 for development of normal spatial learning and memory, and that these effects may reflect disruption of critical period closure by early life ID.


Brain Research | 2008

Iron deficiency alters expression of genes implicated in Alzheimer disease pathogenesis

Erik S. Carlson; Rhamy Magid; Anna Petryk; Michael K. Georgieff

Neonatal brain iron deficiency occurs after insufficient maternal dietary iron intake, maternal hypertension, and maternal diabetes mellitus and results in short and long-term neurologic and behavioral deficits. Early iron deficiency affects the genomic profile of the developing hippocampus that persists despite iron repletion. The purpose of the present study was threefold: 1) quantitative PCR confirmation of our previous microarray results, demonstrating upregulation of a network of genes leading to beta-amyloid production and implicated in Alzheimer disease etiology in iron-deficient anemic rat pups at the time of hippocampal differentiation; 2) investigation of the potential contributions of iron deficiency anemia and iron treatment to this differential gene expression in the hippocampus; and 3) investigation of these genes over a developmental time course in a mouse model where iron deficiency is limited to hippocampus, is not accompanied by anemia and is not repletable. Quantitative PCR confirmed altered regulation in 6 of 7 Alzheimer-related genes (Apbb1, C1qa, Clu, App, Cst3, Fn1, Htatip) in iron-deficient rats relative to iron-sufficient controls at P15. Comparison of untreated to treated iron-deficient animals at this age suggested the strong role of iron deficiency, not treatment, in the upregulation of this gene network. The non-anemic hippocampal iron-deficient mouse demonstrated upregulation of all 7 genes in this pathway from P5 to P25. Our results suggest a role for neonatal iron deficiency in dysregulation of genes that may set the stage for long-term neurodegenerative disease and that this may occur through a histone modification mechanism.


Journal of Neurodevelopmental Disorders | 2010

Hippocampus specific iron deficiency alters competition and cooperation between developing memory systems

Erik S. Carlson; Stephanie J. B. Fretham; Erica L. Unger; Michael B. O’Connor; Anna Petryk; Timothy Schallert; Raghavendra Rao; Ivan Tkáč; Michael K. Georgieff

Iron deficiency (ID) is the most common gestational micronutrient deficiency in the world, targets the fetal hippocampus and striatum and results in long-term behavioral abnormalities. These structures primarily mediate spatial and procedural memory, respectively, in the rodent but have interconnections that result in competition or cooperation during cognitive tasks. We determined whether ID-induced impairment of one alters the function of the other by genetically inducing a 40% reduction of hippocampus iron content in late fetal life in mice and measuring dorsal striatal gene expression and metabolism and the behavioral balance between the two memory systems in adulthood. Slc11a2hipp/hipp mice had similar striatum iron content, but 18% lower glucose and 44% lower lactate levels, a 30% higher phosphocreatine:creatine ratio, and reduced iron transporter gene expression compared to wild type (WT) littermates, implying reduced striatal metabolic function. Slc11a2hipp/hipp mice had longer mean escape times on a cued task paradigm implying impaired procedural memory. Nevertheless, when hippocampal and striatal memory systems were placed in competition using a Morris Water Maze task that alternates spatial navigation and visual cued responses during training, and forces a choice between hippocampal and striatal strategies during probe trials, Slc11a2hipp/hipp mice used the hippocampus-dependent response less often (25%) and the visual cued response more often (75%) compared to WT littermates that used both strategies approximately equally. Hippocampal ID not only reduces spatial recognition memory performance but also affects systems that support procedural memory, suggesting an altered balance between memory systems.


Journal of Nutrition | 2013

Neuronal-Specific Iron Deficiency Dysregulates Mammalian Target of Rapamycin Signaling during Hippocampal Development in Nonanemic Genetic Mouse Models

Stephanie J. B. Fretham; Erik S. Carlson; Michael K. Georgieff

Iron deficiency (ID) is the most common nutrient deficiency worldwide, disproportionally affecting infants, children, and women of childbearing age. Although ID commonly occurs with anemia (IDA), nonanemic ID is 3 times more common than IDA in toddlers and also occurs in infants following gestational complications. Both conditions negatively affect motor, socio-emotional, and cognitive behaviors, suggesting that iron, apart from anemia, has a critical role in neurodevelopment. Here, the specific role of iron in regulation of mammalian target of rapamycin (mTOR) signaling (a kinase pathway that integrates metabolic supply and demand to regulate cell growth and morphology) was examined using 2 hippocampal, pyramidal cell-specific, nonanemic, genetic mouse models of ID: a CAMKIIα cre-loxP permanent knockout of divalent metal transporter-1 (DMT-1 CKO) and a CAMKIIα-tTA-driven reversible, overexpression of nonfunctional, dominant negative transferrin receptor-1 (DN TfR-1). In both models, mTOR activity, assessed by phosphorylation levels of key proteins, was upregulated during development by ID [S6K(Thr389) phosphorylation increased 87 and 57% in the DMT-1 CKO and DN TfR-1 models, respectively; P < 0.05]. This effect was shown to be iron-dependent, because iron repletion at postnatal d 21 normalized mTOR activity in the reversible DN TfR-1 model (62% reduction compared with unrepleted mice; P < 0.05). In the permanent DMT-1 CKO model, suppression of ID-induced mTOR hyperactivity by rapamycin administered during the sensitive period for iron improved Morris water maze performance despite ongoing ID (DMT-1 wild-type and DMT-1 CKO mice reached criterion in 3 d compared with 4 d necessary for vehicle-treated DMT-1 CKO mice; P < 0.05). Together, these findings implicate mTOR dysregulation as a cellular mechanism underlying the acute and persistent neurodevelopmental deficits that accompany early-life ID.


Chemical Research in Toxicology | 2018

Methyl DNA Phosphate Adduct Formation in Rats Treated Chronically with 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone and Enantiomers of Its Metabolite 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol

Bin Ma; Adam T. Zarth; Erik S. Carlson; Peter W. Villalta; Pramod Upadhyaya; Irina Stepanov; Stephen S. Hecht

The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a powerful lung carcinogen in animal models and is considered a causative factor for lung cancer in tobacco users. NNK is stereoselectively and reversibly metabolized to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which is also a lung carcinogen. Both NNK and NNAL undergo metabolic activation by α-hydroxylation on their methyl groups to form pyridyloxobutyl and pyridylhydroxybutyl DNA base and phosphate adducts, respectively. α-Hydroxylation also occurs on the α-methylene carbons of NNK and NNAL to produce methane diazohydroxide, which reacts with DNA to form methyl DNA base adducts. DNA adducts of NNK and NNAL are important in their mechanisms of carcinogenesis. In this study, we characterized and quantified methyl DNA phosphate adducts in the lung of rats treated with 5 ppm of NNK, (S)-NNAL, or (R)-NNAL in drinking water for 10, 30, 50, and 70 weeks, by using a novel liquid chromatography-nanoelectrospray ionization-high resolution tandem mass spectrometry method. A total of 23, 21, and 22 out of 32 possible methyl DNA phosphate adducts were detected in the lung tissues of rats treated with NNK, (S)-NNAL, and (R)-NNAL, respectively. Levels of the methyl DNA phosphate adducts were 2290-4510, 872-1120, and 763-1430 fmol/mg DNA, accounting for 15-38%, 8%, and 5-9% of the total measured DNA adducts in rats treated with NNK, (S)-NNAL, and (R)-NNAL, respectively. The methyl DNA phosphate adducts characterized in this study further enriched the diversity of DNA adducts formed by NNK and NNAL. These results provide important new data regarding NNK- and NNAL-derived DNA damage and new insights pertinent to future mechanistic and biomonitoring studies of NNK, NNAL, and other chemical methylating agents.

Collaboration


Dive into the Erik S. Carlson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Petryk

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Ma

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Phu V. Tran

University of Minnesota

View shared research outputs
Researchain Logo
Decentralizing Knowledge