Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phu V. Tran is active.

Publication


Featured researches published by Phu V. Tran.


The Journal of Neuroscience | 2007

The Neonatal Ventromedial Hypothalamus Transcriptome Reveals Novel Markers with Spatially Distinct Patterning

Deborah M. Kurrasch; Clement C. Cheung; Florence Lee; Phu V. Tran; Kenji Hata; Holly A. Ingraham

The ventromedial hypothalamus (VMH) is a distinct morphological nucleus involved in feeding, fear, thermoregulation, and sexual activity. It is essentially unknown how VMH circuits underlying these innate responses develop, in part because the VMH remains poorly defined at a cellular and molecular level. Specifically, there is a paucity of cell-type-specific genetic markers with which to identify neuronal subgroups and manipulate development and signaling in vivo. Using gene profiling, we now identify ∼200 genes highly enriched in neonatal (postnatal day 0) mouse VMH tissue. Analyses of these VMH markers by real or virtual (Allen Brain Atlas; http://www.brain-map.org) experiments revealed distinct regional patterning within the newly formed VMH. Top neonatal markers include transcriptional regulators such as Vgll2, SF-1, Sox14, Satb2, Fezf1, Dax1, Nkx2-2, and COUP-TFII, but interestingly, the highest expressed VMH transcript, the transcriptional coregulator Vgll2, is completely absent in older animals. Collective results from zebrafish knockdown experiments and from cellular studies suggest that a subset of these VMH markers will be important for hypothalamic development and will be downstream of SF-1, a critical factor for normal VMH differentiation. We show that at least one VMH marker, the AT-rich binding protein Satb2, was responsive to the loss of leptin signaling (Lepob/ob) at postnatal day 0 but not in the adult, suggesting that some VMH transcriptional programs might be influenced by fetal or early postnatal environments. Our study describing this comprehensive “VMH transcriptome” provides a novel molecular toolkit to probe further the genetic basis of innate neuroendocrine behavioral responses.


Molecular and Cellular Neuroscience | 2003

Requirement of the orphan nuclear receptor SF-1 in terminal differentiation of ventromedial hypothalamic neurons

Phu V. Tran; Martin B. Lee; Oscar Marín; Baoji Xu; Kevin R. Jones; Louis F. Reichardt; John L. R. Rubenstein; Holly A. Ingraham

The ventromedial hypothalamic nucleus (VMN) is known to mediate autonomic responses in feeding and reproductive behaviors. To date, the most definitive molecular marker for the VMN is the orphan nuclear receptor steroidogenic factor-1 (SF-1). However, it is unclear whether SF-1 functions in the VMN as it does in peripheral endocrine organ development where loss of SF-1 results in organ agenesis due to apoptosis. Here, we provide evidence that SF-1 has a distinct role in later stages of VMN development by demonstrating the persistence of VMN precursors, the misexpression of an early marker (NKX2-1) concomitant with the absence of a late marker (BDNF neurotrophin), and the complete loss of projections to the bed nucleus of stria terminalis and the amygdala in sf-1 null mice. Our findings demonstrate that SF-1 is required for terminal differentiation of the VMN and suggest that transcriptional targets of SF-1 mediate normal circuitry between the hypothalamus and limbic structures in the telencephalon.


Pediatric Research | 2009

Long-term reduction of hippocampal brain-derived neurotrophic factor activity after fetal-neonatal iron deficiency in adult rats.

Phu V. Tran; Stephanie J. B. Fretham; Erik S. Carlson; Michael K. Georgieff

Fetal-neonatal iron deficiency acutely alters hippocampal biochemistry, neural morphology, and electrophysiology accompanied by a downregulation of brain-derived neurotrophic factor (BDNF). These changes provide a cellular and molecular basis for observed short-term learning and memory impairments. However, the etiology of residual, long-term hippocampal neurotransmission abnormalities and learning impairments after treatment remain unclear. Because BDNF modulates learning and memory, we assessed its expression in 65-d-old formerly iron deficient (FID) male rats that had been iron deficient during the fetal-neonatal period and treated with iron since postnatal day 7. BDNF-III and -IV mRNAs and BDNF protein expression remained down-regulated in FID rats when compared with the always iron-sufficient rats. Expressions of BDNF activity-dependent downstream targets (3-hydroxy-3-methylglutaryl CoA reductase and immediate early genes c-fos, early growth response gene 1 and 2) were reduced in FID rats. In turn, hippocampal expressions of direct targets of early-growth response genes, including hypoxia-inducible factor 1, dual-specificity phosphatase 4, IGF 2, and myelin basic protein were also diminished in FID rats. Collectively, fetal-neonatal iron deficiency lowers hippocampal BDNF expression and function beyond the period of iron deficiency. These findings may underlie the persistence of learning deficits seen after fetal-neonatal iron deficiency.


The Journal of Comparative Neurology | 2006

Diminished Hypothalamic bdnf Expression and Impaired VMH Function Are Associated with Reduced SF-1 Gene Dosage

Phu V. Tran; Susan F. Akana; Irena Malkovska; Mary F. Dallman; Luis F. Parada; Holly A. Ingraham

In the central nervous system, steroidogenic factor 1 (SF‐1) is required for terminal differentiation of neurons within the ventromedial hypothalamus (VMH). Given the importance of this brain region in regulating physiological homeostasis including energy balance, we asked how sf‐1 gene dosage affects VMH function. Despite an apparent normal VMH cytoarchitecture, sf‐1 heterozygous (+/−) mice exhibited diet‐induced obesity when they were group housed with hyperphagia and impaired sympathetic activity. On the basis of previous findings suggesting brain‐derived neurotrophic factor (bdnf) as an SF‐1 target gene, we assessed the colocalization of SF‐1 and BDNF expressing neurons, as well as expression of the four exon‐specific bdnf promoter transcripts in the VMH. Indeed, a subset of neurons located primarily in the ventrolateral VMH coexpress SF‐1 and BDNF, and in contrast to other brain regions, bdnf I, II, and IV but not III are found. Consistent with these findings, cellular assays showed that SF‐1 is able to activate exon I and IV promoters. More important, levels of bdnf I and IV in the VMH were reduced in heterozygous mice similar to levels observed in fasted wild‐type mice. Collectively, we propose that a reduction in the sf‐1 gene dosage directly affects BDNF levels in the VMH and disrupts normal hypothalamic function. J. Comp. Neurol. 498:637–648, 2006.


Developmental Neuroscience | 2010

Gestational and Neonatal Iron Deficiency Alters Apical Dendrite Structure of CA1 Pyramidal Neurons in Adult Rat Hippocampus

Katyarina E. Brunette; Phu V. Tran; Jane D. Wobken; Erik S. Carlson; Michael K. Georgieff

The hippocampus develops rapidly during the late fetal and early postnatal periods. Fetal/neonatal iron deficiency anemia (IDA) alters the genomic expression, neurometabolism and electrophysiology of the hippocampus during the period of IDA and, strikingly, in adulthood despite neonatal iron treatment. To determine how early IDA affects the structural development of the apical dendrite arbor in hippocampal area CA1 in the offspring, pregnant rat dams were given an iron-deficient (ID) diet between gestational day 2 and postnatal day (P) 7 followed by rescue with an iron-sufficient (IS) diet. Apical dendrite morphology in hippocampus area CA1 was assessed at P15, P30 and P70 by Scholl analysis of Golgi-Cox-stained neurons. Messenger RNA levels of nine cytoplasmic and transmembrane proteins that are critical for dendrite growth were analyzed at P7, P15, P30 and P65 by quantitative real-time polymerase chain reaction. The ID group had reduced transcript levels of proteins that modify actin and tubulin dynamics [e.g. cofilin-1 (Cfl-1), profilin-1 (Pfn-1), and profilin-2 (Pfn-2)] at P7, followed at P15 by a proximal shift in peak branching, thinner third-generation dendritic branches and smaller-diameter spine heads. At P30, iron treatment since P7 resulted in recovery of all transcripts and structural components except for a continued proximal shift in peak branching. Nevertheless, at P65–P70, the formerly ID group showed a 32% reduction in 9 mRNA transcripts, including Cfl-1 and Pfn-1 and Pfn-2, accompanied by 25% fewer branches, that were also proximally shifted. These alterations may be due to early-life programming of genes important for structural plasticity during adulthood and may contribute to the abnormal long-term electrophysiology and recognition memory behavior that follows early iron deficiency.


Journal of Nutrition | 2008

Early-Life Iron Deficiency Anemia Alters Neurotrophic Factor Expression and Hippocampal Neuron Differentiation in Male Rats

Phu V. Tran; Erik S. Carlson; Stephanie J. B. Fretham; Michael K. Georgieff

Fetal-neonatal iron deficiency alters hippocampal neuronal morphology, reduces its volume, and is associated with acute and long-term learning impairments. However, neither the effects of early-life iron deficiency anemia on growth, differentiation, and survival of hippocampal neurons nor regulation of the neurotrophic factors that mediate these processes has been investigated. We compared hippocampal expression of neurotrophic factors in male rats made iron deficient (ID) from gestational d 2 to postnatal d (P) 7 to iron-sufficient controls at P7, 15, and 30 with quantitative RT-PCR, Western analysis, and immunohistology. Iron deficiency downregulated brain-derived neurotrophic factor (BDNF) expression in the hippocampus without compensatory upregulation of its specific receptor, tyrosine-receptor kinase B. Consistent with low overall BDNF activity, we found lower expression of early-growth response gene-1 and -2, transcriptional targets of BDNF signaling. Doublecortin expression, a marker of differentiating neurons, was reduced during peak iron deficiency, suggesting impaired neuronal differentiation in the ID hippocampus. In contrast, iron deficiency upregulated hippocampal nerve growth factor, epidermal growth factor, and glial-derived neurotrophic factor accompanied by an increase in neurotrophic receptor p75 expression. Our findings suggest that fetal-neonatal iron deficiency lowers BDNF function and impairs neuronal differentiation in the hippocampus.


Brain Research | 2008

Postnatal Age Influences Hypoglycemia-induced Neuronal Injury in the Rat Brain

Kathleen Ennis; Phu V. Tran; Elizabeth R. Seaquist; Raghavendra Rao

Acute hypoglycemia is associated with neuronal injury in the mature human and rodent brains. Even though hypoglycemia is a common metabolic problem during development, its effects on the developing brain are not well understood. To characterize the severity of regional brain injury, postnatal day (P) 7, P14, P28 (N=20-30/age) and adult rats (N=8-12) were subjected to acute hypoglycemia of equivalent severity and duration (mean blood glucose concentration: 30.0+/-0.1 mg/dL for 210 min). Neuronal injury in the cerebral cortex, striatum, hippocampus and hypothalamus was assessed 24 h, 72 h and 1 wk later by determining the number of degenerating cells positive for Fluoro-Jade B (FJB+) in the region. Compared with age-matched control, greater number of FJB+ cells was present per brain section of P14, P28 and adult hypoglycemia groups (p<0.005, each). The cerebral cortex was more vulnerable than hippocampus and striatum at all three ages (p<0.01). Compared with P28 (131+/-21) and adult (171+/-21) rats, fewer FJB+ cells (39+/-6) per brain section were present in P14 hypoglycemic rats (p<0.01, each). Hypoglycemia was not associated with cell injury in P7 rats. FJB+ cells were absent in the hypothalamus in all four ages. Similar results were present 24 h post-hypoglycemia, whereas analysis at 1 wk demonstrated efficient clearing of FJB+ cells in the brain regions of developing rats. Varying the duration of fasting did not alter the severity of regional cell injury. These results suggest that postnatal age influences the regional vulnerability to hypoglycemia-induced neuronal death in the rat brain.


Development and Psychopathology | 2015

Early life nutrition and neural plasticity

Michael K. Georgieff; Katya E. Brunette; Phu V. Tran

The human brain undergoes a remarkable transformation during fetal life and the first postnatal years from a relatively undifferentiated but pluripotent organ to a highly specified and organized one. The outcome of this developmental maturation is highly dependent on a sequence of environmental exposures that can have either positive or negative influences on the ultimate plasticity of the adult brain. Many environmental exposures are beyond the control of the individual, but nutrition is not. An ever-increasing amount of research demonstrates not only that nutrition shapes the brain and affects its function during development but also that several nutrients early in life have profound and long-lasting effects on the brain. Nutrients have been shown to alter opening and closing of critical and sensitive periods of particular brain regions. This paper discusses the roles that various nutrients play in shaping the developing brain, concentrating specifically on recently explicated biological mechanisms by which particularly salient nutrients influence childhood and adult neural plasticity.


Hippocampus | 2012

Temporal manipulation of transferrin-receptor-1-dependent iron uptake identifies a sensitive period in mouse hippocampal neurodevelopment.

Stephanie J. B. Fretham; Erik S. Carlson; Jane D. Wobken; Phu V. Tran; Anna Petryk; Michael K. Georgieff

Iron is a necessary substrate for neuronal function throughout the lifespan, but particularly during development. Early life iron deficiency (ID) in humans (late gestation through 2–3 yr) results in persistent cognitive and behavioral abnormalities despite iron repletion. Animal models of early life ID generated using maternal dietary iron restriction also demonstrate persistent learning and memory deficits, suggesting a critical requirement for iron during hippocampal development. Precise definition of the temporal window for this requirement has been elusive due to anemia and total body and brain ID inherent to previous dietary restriction models. To circumvent these confounds, we developed transgenic mice that express tetracycline transactivator regulated, dominant negative transferrin receptor (DNTfR1) in hippocampal neurons, disrupting TfR1 mediated iron uptake specifically in CA1 pyramidal neurons. Normal iron status was restored by doxycycline administration. We manipulated the duration of ID using this inducible model to examine long‐term effects of early ID on Morris water maze learning, CA1 apical dendrite structure, and defining factors of critical periods including parvalbmin (PV) expression, perineuronal nets (PNN), and brain‐derived neurotrophic factor (BDNF) expression. Ongoing ID impaired spatial memory and resulted in disorganized apical dendrite structure accompanied by altered PV and PNN expression and reduced BDNF levels. Iron repletion at P21, near the end of hippocampal dendritogenesis, restored spatial memory, dendrite structure, and critical period markers in adult mice. However, mice that remained hippocampally iron deficient until P42 continued to have spatial memory deficits, impaired CA1 apical dendrite structure, and persistent alterations in PV and PNN expression and reduced BDNF despite iron repletion. Together, these findings demonstrate that hippocampal iron availability is necessary between P21 and P42 for development of normal spatial learning and memory, and that these effects may reflect disruption of critical period closure by early life ID.


American Journal of Physiology-endocrinology and Metabolism | 2012

Gestational-neonatal iron deficiency suppresses and iron treatment reactivates IGF signaling in developing rat hippocampus.

Phu V. Tran; Stephanie J. B. Fretham; Jane D. Wobken; Bradley S. Miller; Michael K. Georgieff

Gestational-neonatal iron deficiency, a common micronutrient deficiency affecting the offspring of more than 30% of pregnancies worldwide, leads to long-term cognitive and behavioral abnormalities. Preclinical models of gestational-neonatal iron deficiency result in reduced energy metabolism and expression of genes critical for neuronal plasticity and cognitive function, which are associated with a smaller hippocampal volume and abnormal neuronal dendrite growth. Because insulin-like growth factor (IGF) modulates early postnatal cellular growth, differentiation, and survival, we used a dietary-induced rat model to assess the effects of gestational iron deficiency on activity of the IGF system. We hypothesized that gestational iron deficiency attenuates postnatal hippocampal IGF signaling and results in downstream effects that contribute to hippocampal anatomic and functional deficits. At postnatal day (P) 15 untreated gestational-neonatal iron deficiency markedly suppressed hippocampal IGF activation and protein kinase B signaling, and reduced neurogenesis, while elevating extracellular signal-regulated kinase 1/2 signaling and hypoxia-inducible factor-1α expression. Iron treatment beginning at P7 restored IGF signaling, increased neurogenesis, and normalized all parameters by the end of rapid hippocampal differentiation (P30). Expression of the neuron-specific synaptogenesis marker, disc-large homolog 4 (PSD95), increased more rapidly than the glia-specific myelination marker, myelin basic protein, following iron treatment, suggesting a more robust response to iron therapy in IGF-I-dependent neurons than IGF-II-dependent glia. Collectively, our findings suggest that IGF dysfunction is in part responsible for hippocampal abnormalities in untreated iron deficiency. Early postnatal iron treatment of gestational iron deficiency reactivates the IGF system and promotes neurogenesis and differentiation in the hippocampus during a critical developmental period.

Collaboration


Dive into the Phu V. Tran's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebecca A. Simmons

Children's Hospital of Philadelphia

View shared research outputs
Researchain Logo
Decentralizing Knowledge