Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik T. Buitenhuis is active.

Publication


Featured researches published by Erik T. Buitenhuis.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks

Josep G. Canadell; C. Le Quéré; M. R. Raupach; Christopher B. Field; Erik T. Buitenhuis; Philippe Ciais; T. J. Conway; Nathan P. Gillett; R. A. Houghton; Gregg Marland

The growth rate of atmospheric carbon dioxide (CO2), the largest human contributor to human-induced climate change, is increasing rapidly. Three processes contribute to this rapid increase. Two of these processes concern emissions. Recent growth of the world economy combined with an increase in its carbon intensity have led to rapid growth in fossil fuel CO2 emissions since 2000: comparing the 1990s with 2000–2006, the emissions growth rate increased from 1.3% to 3.3% y−1. The third process is indicated by increasing evidence (P = 0.89) for a long-term (50-year) increase in the airborne fraction (AF) of CO2 emissions, implying a decline in the efficiency of CO2 sinks on land and oceans in absorbing anthropogenic emissions. Since 2000, the contributions of these three factors to the increase in the atmospheric CO2 growth rate have been ≈65 ± 16% from increasing global economic activity, 17 ± 6% from the increasing carbon intensity of the global economy, and 18 ± 15% from the increase in AF. An increasing AF is consistent with results of climate–carbon cycle models, but the magnitude of the observed signal appears larger than that estimated by models. All of these changes characterize a carbon cycle that is generating stronger-than-expected and sooner-than-expected climate forcing.


Science | 2007

Saturation of the Southern Ocean CO2 Sink Due to Recent Climate Change

Corinne Le Quéré; Christian Rödenbeck; Erik T. Buitenhuis; T. J. Conway; R. L. Langenfelds; Antony Gomez; Casper Labuschagne; Michel Ramonet; Takakiyo Nakazawa; Nicolas Metzl; Nathan P. Gillett; Martin Heimann

Based on observed atmospheric carbon dioxide (CO2) concentration and an inverse method, we estimate that the Southern Ocean sink of CO2 has weakened between 1981 and 2004 by 0.08 petagrams of carbon per year per decade relative to the trend expected from the large increase in atmospheric CO2. We attribute this weakening to the observed increase in Southern Ocean winds resulting from human activities, which is projected to continue in the future. Consequences include a reduction of the efficiency of the Southern Ocean sink of CO2 in the short term (about 25 years) and possibly a higher level of stabilization of atmospheric CO2 on a multicentury time scale.


Global Biogeochemical Cycles | 2006

Biogeochemical fluxes through mesozooplankton

Erik T. Buitenhuis; Corinne Le Quéré; Olivier Aumont; Grégory Beaugrand; Adrian Bunker; Andrew Hirst; Tsutomu Ikeda; Todd O'Brien; Sergey Piontkovski; Dietmar Straile

Mesozooplankton are significant consumers of phytoplankton, and have a significant impact on the oceanic biogeochemical cycles of carbon and other elements. Their contribution to vertical particle flux is much larger than that of microzooplankton, yet most global biogeochemical models have lumped these two plankton functional types together. In this paper we bring together several newly available data syntheses on observed mesozooplankton concentration and the biogeochemical fluxes they mediate, and perform data synthesis on flux rates for which no synthesis was available. We update the equations of a global biogeochemical model with an explicit representation of mesozooplankton (PISCES). We use the rate measurements to constrain the parameters of mesozooplankton, and evaluate the model results with our independent synthesis of mesozooplankton concentration measurements. We also perform a sensitivity study to analyze the impact of uncertainty in the flux rates. The standard model run was parameterized on the basis of the data synthesis of flux rates. The results of mesozooplankton concentration in the standard run are slightly lower than the independent databases of observed mesozooplankton concentrations, but not significantly. This shows that structuring and parameterizing biogeochemical models on the basis of observations without tuning is a strategy that works. The sensitivity study showed that by using a maximum grazing rate of mesozooplankton that is only 30% higher than the poorly constrained fit to the observations, the model mesozooplankton concentration gets closer to the observations, but mesozooplankton grazing becomes higher than what is currently accounted for. This is an indication that food selection by mesozooplankton is not sufficiently quantified at present. Despite the amount of effort that is represented by the data syntheses of all relevant processes, the good results that were obtained for mesozooplankton indicate that this effort needs to be applied to all components of marine biogeochemistry. The development of ecosystem models that better represent key plankton groups and that are more closely based on observations should lead to better understanding and quantification of the feedbacks between marine ecosystems and climate.


Global Biogeochemical Cycles | 2010

Impact of climate change and variability on the global oceanic sink of CO2

Corinne Le Quéré; Taro Takahashi; Erik T. Buitenhuis; Christian Rödenbeck; Stewart C. Sutherland

About one quarter of the CO2 emitted to the atmosphere by human activities is absorbed annually by the ocean. All the processes that influence the oceanic uptake of CO2 are controlled by climate. Hence changes in climate (both natural and human-induced) are expected to alter the uptake of CO2 by the ocean. However, available information that constrains the direction, magnitude, or rapidity of the response of ocean CO2 to changes in climate is limited. We present an analysis of oceanic CO2 trends for 1981 to 2007 from data and a model. Our analysis suggests that the global ocean responded to recent changes in climate by outgassing some preindustrial carbon, in part compensating the oceanic uptake of anthropogenic CO2. Using a model, we estimate that climate change and variability reduced the CO2 uptake by 12% compared to a simulation where constant climate is imposed, and offset 63% of the trend in response to increasing atmospheric CO2 alone. The response is caused by changes in wind patterns and ocean warming, with important nonlinear effects that amplify the response of oceanic CO2 to changes in climate by > 30%.


Journal of Phycology | 1999

Photosynthesis and Calcification by Emiliania huxleyi (Prymnesiophyceae) as a Function of Inorganic Carbon Species

Erik T. Buitenhuis; Hein J. W. de Baar; Marcel J. W. Veldhuis

To test the possibility of inorganic carbon limitation of the marine unicellular alga Emiliania huxleyi (Lohmann) Hay and Mohler, its carbon acquisition was measured as a function of the different chemical species of inorganic carbon present in the medium. Because these different species are interdependent and covary in any experiment in which the speciation is changed, a set of experiments was performed to produce a multidimensional carbon uptake scheme for photosynthesis and calcification. This scheme shows that CO2 that is used for photosynthesis comes from two sources. The CO2 in seawater supports a modest rate of photosynthesis. The HCO is the major substrate for photosynthesis by intracellular production of CO2 (HCO+ H+→ CO2+ H2O → CH2O + O2). This use of HCO is possible because of the simultaneous calcification using a second HCO, which provides the required proton (HCO+ Ca2+→ CaCO3+ H+). The HCO is the only substrate for calcification. By distinguishing the two sources of CO2 used in photosynthesis, it was shown that E. huxleyi has a K½ for external CO2 of “only” 1.9 ± 0.5 μM (and a Vmax of 2.4 ± 0.1 pmol·cell−1·d−1). Thus, in seawater that is in equilibrium with the atmosphere ([CO2]= 14 μM, [HCO]= 1920 μM, at fCO2= 360 μatm, pH = 8, T = 15° C), photosynthesis is 90% saturated with external CO2. Under the same conditions, the rate of photosynthesis is doubled by the calcification route of CO2 supply (from 2.1 to 4.5 pmol·cell−1·d−1). However, photosynthesis is not fully saturated, as calcification has a K½ for HCO of 3256 ± 1402 μM and a Vmax of 6.4 ± 1.8 pmol·cell−1·d−1. The H+ that is produced during calcification is used with an efficiency of 0.97 ± 0.08, leading to the conclusion that it is used intracellularly. A maximum efficiency of 0.88 can be expected, as NO uptake generates a H+ sink (OH− source) for the cell. The success of E. huxleyi as a coccolithophorid may be related to the efficient coupling between H+ generation in calcification and CO2 fixation in photosynthesis.


Global Biogeochemical Cycles | 2001

Blooms of Emiliania huxleyi are sinks of atmospheric carbon dioxide: A field and mesocosm study derived simulation

Erik T. Buitenhuis; Paul van der Wal; Hein J. W. de Baar

During field measurements in a bloom of Emiliania huxleyi in the North Sea in 1993, an apparently inconsistent combination of observations was measured: (1)fCO2 was lower in the center of the bloom than in the surrounding nonbloom areas and undersaturated with respect to the atmosphere in both cases, (2) within the bloom, enhanced sedimentation of coccoliths-containing fecal pellets was observed, (3) a large atmospheric sink of 1.3 mol C m−2 was derived, and (4) in the same bloom a positive correlation between CaCO3 and fCO2 was observed, which was interpreted as an increase of fCO2 during production of CaCO3. In order to resolve the inconsistency between observations (1, 2, 3) and 4 a one-dimensional three-layer model was constructed. A positive correlation between CaCO3 and fCO2 was obtained when the model was parameterized with data obtained from field and mesocosm studies. The correlation is a feature of the decay phase of a bloom and represents a decrease of fCO2 with a decrease Of CaCO3. Thus it represents the dissolution and sedimentation of CaCO3 rather than its production. Having resolved the ambiguity within the field data by adding the dimension of time in the model, blooms of E. huxleyi can be identified as sinks for atmospheric carbon dioxide. This sink is a function of the calcification to photosynthesis (C:P) ratio of the nitrate-using phytoplankton and is maximal when the C:P ratio is 0.42 (that is, E. huxleyi constitutes 97% of the nitrate-using phytoplankton). Rather than using the model for making accurate predictions about the magnitude of this sink, a sensitivity analysis was performed to give a range of magnitudes for the range of parameter values that were obtained during previous studies. Furthermore, gaps were identified in the current knowledge of carbon fluxes within blooms of E. huxleyi.


Journal of Geophysical Research | 2010

Simulating dimethylsulphide seasonality with the Dynamic Green Ocean Model PlankTOM5

Meike Vogt; S.M. Vallina; Erik T. Buitenhuis; Laurent Bopp; C. Le Quéré

[1] We study the dynamics of dimethylsulphide (DMS) and dimethylsulphoniopropionate (DMSP) using the global ocean biogeochemistry model PlankTOM5, which includes three phytoplankton and two zooplankton functional types (PFTs). We present a fully prognostic DMS module describing intracellular particulate DMSP (DMSPp) production, concentrations of dissolved DMSP (DMSPd), and DMS production and consumption. The model produces DMS fields that compare reasonably well with the observed annual mean DMS fields, zonal mean DMS concentrations, and its seasonal cycle. Modeled ecosystem composition and modeled total chlorophyll influenced mean DMS concentrations and DMS seasonality at mid‐ and high latitudes, but did not control the seasonal cycle in the tropics. The introduction of a direct, irradiation‐dependent DMS production term (exudation) in the model improved the match between modeled and observed DMS seasonality, but deteriorated simulated zonal mean concentrations. In PlankTOM5, exudation was found to be most important for DMS seasonality in the tropics, and a variable DMSP cell quota as a function of light and nutrient stress was more important than a PFT‐specific minimal DMSPp cell quota. The results suggest that DMS seasonality in the low latitudes is mostly driven by light. The agreement between model and data for DMS, DMSPp, and DMSPd is reasonable at the Bermuda Atlantic Time Series Station, where the summer paradox is observed.


Science | 2008

Response to Comment on “Phytoplankton Calcification in a High-CO2 World”

M. Debora Iglesias-Rodriguez; Erik T. Buitenhuis; John A. Raven; Oscar Schofield; Alex J. Poulton; Samantha J. Gibbs; Paul R. Halloran; Hein J. W. de Baar

Recently reported increasing calcification rates and primary productivity in the coccolithophore Emiliania huxleyi were obtained by equilibrating seawater with mixtures of carbon dioxide in air. The noted discrepancy with previously reported decreasing calcification is likely due to the previously less realistic simulation of bicarbonate due to addition of acid or base to obtain simulated future CO2 partial pressure conditions.


Geophysical Research Letters | 2012

Quantifying the impact of anthropogenic nitrogen deposition on oceanic nitrous oxide

Parvadha Suntharalingam; Erik T. Buitenhuis; Corinne Le Quéré; Frank Dentener; Cynthia D. Nevison; James H. Butler; Hermann W. Bange; G. Forster

Anthropogenically induced increases in nitrogen deposition to the ocean can stimulate marine productivity and oceanic emission of nitrous oxide. We present the first global ocean model assessment of the impact on marine N2O of increases in nitrogen deposition from the preindustrial era to the present. We find significant regional increases in marine N2O production downwind of continental outflow, in coastal and inland seas (15–30%),and nitrogen limited regions of the North Atlantic and North Pacific (5–20%). The largest changes occur in the northern Indian Ocean (up to 50%) resulting from a combination of high deposition fluxes and enhanced N2O production pathways in local hypoxic zones. Oceanic regions relatively unaffected by anthropogenic nitrogen deposition indicate much smaller changes (<2%). The estimated change in oceanic N2O source on a global scale is modest (0.08–0.34 Tg N yr-1, ~3–4% of the total ocean source), and consistent with the estimated impact on global export production (~4%).


Science | 2008

Response to Comments on "Saturation of the Southern Ocean CO2 Sink Due to Recent Climate Change"

Corinne Le Quéré; Christian Rödenbeck; Erik T. Buitenhuis; T. J. Conway; R. L. Langenfelds; Antony Gomez; Casper Labuschagne; Michel Ramonet; Takakiyo Nakazawa; Nicolas Metzl; Nathan P. Gillett; Martin Heimann

We estimated a weakening of the Southern Ocean carbon dioxide (CO2) sink since 1981 relative to the trend expected from the large increase in atmospheric CO2. We agree with Law et al. that network choice increases the uncertainty of trend estimates but argue that their network of five locations is too small to be reliable. A future reversal of Southern Ocean CO2 saturation as suggested by Zickfeld et al. is possible, but only at high atmospheric CO2 concentrations, and the effect would be temporary.

Collaboration


Dive into the Erik T. Buitenhuis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Le Quéré

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar

Ivan D. Lima

University of Washington

View shared research outputs
Top Co-Authors

Avatar

John P. Dunne

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Olivier Aumont

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Laurent Bopp

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Taketo Hashioka

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge