Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erika L. Sesti is active.

Publication


Featured researches published by Erika L. Sesti.


Journal of the American Chemical Society | 2017

Electron Decoupling with Dynamic Nuclear Polarization in Rotating Solids

Edward P. Saliba; Erika L. Sesti; Faith J. Scott; Brice J. Albert; Eric J. Choi; Nicholas Alaniva; Chukun Gao; Alexander B. Barnes

Dynamic nuclear polarization (DNP) can enhance NMR sensitivity by orders of magnitude by transferring spin polarization from electron paramagnetic resonance (EPR) to NMR. However, paramagnetic DNP polarizing agents can have deleterious effects on NMR signals. Electron spin decoupling can mitigate these paramagnetic relaxation effects. We demonstrate electron decoupling experiments in conjunction with DNP and magic-angle-spinning NMR spectroscopy. Following a DNP and spin diffusion period, the microwave irradiation frequency is quickly tuned on-resonance with electrons on the DNP polarizing agent. The electron decoupling performance shows a strong dependence on the microwave frequency and DNP polarization time. Microwave frequency sweeps through the EPR line shape are shown as a time domain strategy to significantly improve electron decoupling. For 13C spins on biomolecules frozen in a glassy matrix, electron decoupling reduces the line widths by 11% (47 Hz) and increases the intensity by 14%.


Journal of Magnetic Resonance | 2018

Magic angle spinning NMR below 6 K with a computational fluid dynamics analysis of fluid flow and temperature gradients

Erika L. Sesti; Nicholas Alaniva; Peter W. Rand; Eric J. Choi; Brice J. Albert; Edward P. Saliba; Faith J. Scott; Alexander B. Barnes

We report magic angle spinning (MAS) up to 8.5 kHz with a sample temperature below 6 K using liquid helium as a variable temperature fluid. Cross polarization 13C NMR spectra exhibit exquisite sensitivity with a single transient. Remarkably, 1H saturation recovery experiments show a 1H T1 of 21 s with MAS below 6 K in the presence of trityl radicals in a glassy matrix. Leveraging the thermal spin polarization available at 4.2 K versus 298 K should result in 71 times higher signal intensity. Taking the 1H longitudinal relaxation into account, signal averaging times are therefore predicted to be expedited by a factor of >500. Computer assisted design (CAD) and finite element analysis were employed in both the design and diagnostic stages of this cryogenic MAS technology development. Computational fluid dynamics (CFD) models describing temperature gradients and fluid flow are presented. The CFD models bearing and drive gas maintained at 100 K, while a colder helium variable temperature fluid stream cools the center of a zirconia rotor. Results from the CFD were used to optimize the helium exhaust path and determine the sample temperature. This novel cryogenic experimental platform will be integrated with pulsed dynamic nuclear polarization and electron decoupling to interrogate biomolecular structure within intact human cells.


Journal of Magnetic Resonance | 2018

Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization

Faith J. Scott; Edward P. Saliba; Brice J. Albert; Nicholas Alaniva; Erika L. Sesti; Chukun Gao; Natalie C. Golota; Eric J. Choi; Anil P. Jagtap; Johannes J. Wittmann; Michael Eckardt; Wolfgang Harneit; Björn Corzilius; Snorri Th. Sigurdsson; Alexander B. Barnes

We describe a frequency-agile gyrotron which can generate frequency-chirped microwave pulses. An arbitrary waveform generator (AWG) within the NMR spectrometer controls the microwave frequency, enabling synchronized pulsed control of both electron and nuclear spins. We demonstrate that the acceleration of emitted electrons, and thus the microwave frequency, can be quickly changed by varying the anode voltage. This strategy results in much faster frequency response than can be achieved by changing the potential of the electron emitter, and does not require a custom triode electron gun. The gyrotron frequency can be swept with a rate of 20 MHz/μs over a 670 MHz bandwidth in a static magnetic field. We have already implemented time-domain electron decoupling with dynamic nuclear polarization (DNP) magic angle spinning (MAS) with this device. In this contribution, we show frequency-swept DNP enhancement profiles recorded without changing the NMR magnet or probe. The profile of endofullerenes exhibits a DNP profile with a <10 MHz linewidth, indicating that the device also has sufficient frequency stability, and therefore phase stability, to implement pulsed DNP mechanisms such as the frequency-swept solid effect. We describe schematics of the mechanical and vacuum construction of the device which includes a novel flanged sapphire window assembly. Finally, we discuss how commercially available continuous-wave gyrotrons can potentially be converted into similar frequency-agile high-power microwave sources.


Journal of Magnetic Resonance | 2017

Instrumentation for cryogenic magic angle spinning dynamic nuclear polarization using 90 L of liquid nitrogen per day

Brice J. Albert; Seong Ho Pahng; Nicholas Alaniva; Erika L. Sesti; Peter W. Rand; Edward P. Saliba; Faith J. Scott; Eric J. Choi; Alexander B. Barnes

Cryogenic sample temperatures can enhance NMR sensitivity by extending spin relaxation times to improve dynamic nuclear polarization (DNP) and by increasing Boltzmann spin polarization. We have developed an efficient heat exchanger with a liquid nitrogen consumption rate of only 90L per day to perform magic-angle spinning (MAS) DNP experiments below 85K. In this heat exchanger implementation, cold exhaust gas from the NMR probe is returned to the outer portion of a counterflow coil within an intermediate cooling stage to improve cooling efficiency of the spinning and variable temperature gases. The heat exchange within the counterflow coil is calculated with computational fluid dynamics to optimize the heat transfer. Experimental results using the novel counterflow heat exchanger demonstrate MAS DNP signal enhancements of 328±3 at 81±2K, and 276±4 at 105±2K.


Journal of Magnetic Resonance | 2016

Modelling of OPNMR phenomena using photon energy-dependent 〈Sz〉 in GaAs and InP.

Dustin D. Wheeler; Matthew M. Willmering; Erika L. Sesti; X. Pan; D. Saha; Christopher J. Stanton; Sophia E. Hayes

We have modified the model for optically-pumped NMR (OPNMR) to incorporate a revised expression for the expectation value of the z-projection of the electron spin, 〈Sz〉 and apply this model to both bulk GaAs and a new material, InP. This expression includes the photon energy dependence of the electron polarization when optically pumping direct-gap semiconductors in excess of the bandgap energy, Eg. Rather than using a fixed value arising from coefficients (the matrix elements) for the optical transitions at the k=0 bandedge, we define a new parameter, Sopt(Eph). Incorporating this revised element into the expression for 〈Sz〉, we have simulated the photon energy dependence of the OPNMR signals from bulk semi-insulating GaAs and semi-insulating InP. In earlier work, we matched calculations of electron spin polarization (alone) to features in a plot of OPNMR signal intensity versus photon energy for optical pumping (Ramaswamy et al., 2010). By incorporating an electron spin polarization which varies with pump wavelength into the penetration depth model of OPNMR signal, we are able to model features in both III-V semiconductors. The agreement between the OPNMR data and the corresponding model demonstrates that fluctuations in the OPNMR intensity have particular sensitivity to light hole-to-conduction band transitions in bulk systems. We provide detailed plots of the theoretical predictions for optical pumping transition probabilities with circularly-polarized light for both helicities of light, broken down into illustrative plots of optical magnetoabsorption and spin polarization, shown separately for heavy-hole and light-hole transitions. These plots serve as an effective roadmap of transitions, which are helpful to other researchers investigating optical pumping effects.


Journal of Magnetic Resonance | 2017

A Combined Experimental Setup for OP and ODNMR

Erika L. Sesti; Matthew M. Willmering; Zayd L. Ma; Dustin D. Wheeler; Mark S. Conradi; Sophia E. Hayes

Instrumentation for optically-pumped and optically-detected nuclear magnetic resonance (OPNMR and ODNMR) has been developed and implemented as a single experimental apparatus to study semiconductors such as GaAs and CdTe. These two measurement schemes use many of the same components for experiments. Here we describe, in two parts, the apparatus that can record such measurements and give examples of representative data. In Part 1, the radio-frequency probe and low-temperature cryostat are described, including single-channel and two-channel static cryogenic probes that both incorporate a modified solenoid coil that permits better optical access. In Part 2, the optical bench is described in detail, which uses a set of experiments (magneto-photoluminescence, photoluminescence excitation, detection of polarized photoluminescence) as important input for ODNMR. We are able to portray a robust design that encompasses multiple measurement modalities, along with the ability to change many experimental parameters with ease.


Magnetic Resonance in Chemistry | 2018

Magic angle spinning NMR with metallized rotors as cylindrical microwave resonators

Faith J. Scott; Erika L. Sesti; Eric J. Choi; Alexander J. Laut; Jagadishwar R. Sirigiri; Alexander B. Barnes

We introduce a novel design for millimeter wave electromagnetic structures within magic angle spinning (MAS) rotors. In this demonstration, a copper coating is vacuum deposited onto the outside surface of a sapphire rotor at a thickness of 50 nm. This thickness is sufficient to reflect 197‐GHz microwaves, yet not too thick as to interfere with radiofrequency fields at 300 MHz or prevent sample spinning due to eddy currents. Electromagnetic simulations of an idealized rotor geometry show a microwave quality factor of 148. MAS experiments with sample rotation frequencies of ωr/2π = 5.4 kHz demonstrate that the drag force due to eddy currents within the copper does not prevent sample spinning. Spectra of sodium acetate show resolved 13C J‐couplings of 60 Hz and no appreciable broadening between coated and uncoated sapphire rotors, demonstrating that the copper coating does not prevent shimming and high‐resolution nuclear magnetic resonance spectroscopy. Additionally, 13C Rabi nutation curves of ω1/2π = 103 kHz for both coated and uncoated rotors indicate no detrimental impact of the copper coating on radio frequency coupling of the nuclear spins to the sample coil. We present this metal coated rotor as a first step towards an MAS resonator. MAS resonators are expected to have a significant impact on developments in electron decoupling, pulsed dynamic nuclear polarization (DNP), room temperature DNP, DNP with low‐power microwave sources, and electron paramagnetic resonance detection.


Journal of Physical Chemistry Letters | 2018

Pulsed Electron Decoupling and Strategies for Time Domain Dynamic Nuclear Polarization with Magic Angle Spinning

Edward P. Saliba; Erika L. Sesti; Nicholas Alaniva; Alexander B. Barnes

Magic angle spinning (MAS) dynamic nuclear polarization (DNP) is widely used to increase nuclear magnetic resonance (NMR) signal intensity. Frequency-chirped microwaves yield superior control of electron spins and are expected to play a central role in the development of DNP MAS experiments. Time domain electron control with MAS has considerable promise to improve DNP performance at higher fields and temperatures. We have recently demonstrated that pulsed electron decoupling using frequency-chirped microwaves improves MAS DNP experiments by partially attenuating detrimental hyperfine interactions. The continued development of pulsed electron decoupling will enable a new suite of MAS DNP experiments that transfer polarization directly to observed spins. Time domain DNP transfers to nuclear spins in conjunction with pulsed electron decoupling is described as a viable avenue toward DNP-enhanced, high-resolution NMR spectroscopy over a range of temperatures from <6 to 320 K.


Journal of Magnetic Resonance | 2018

A versatile custom cryostat for dynamic nuclear polarization supports multiple cryogenic magic angle spinning transmission line probes

Faith J. Scott; Nicholas Alaniva; Natalie C. Golota; Erika L. Sesti; Edward P. Saliba; Lauren E. Price; Brice J. Albert; Pinhui Chen; Robert D. O'Connor; Alexander B. Barnes

Dynamic nuclear polarization (DNP) with cryogenic magic angle spinning (MAS) provides significant improvements in NMR sensitivity, yet presents unique technical challenges. Here we describe a custom cryostat and suite of NMR probes capable of manipulating nuclear spins with multi-resonant radiofrequency circuits, cryogenic spinning below 6 K, sample exchange, and microwave coupling for DNP. The corrugated waveguide and six transfer lines needed for DNP and cryogenic spinning functionality are coupled to the probe from the top of the magnet. Transfer lines are vacuum-jacketed and provide bearing and drive gas, variable temperature fluid, two exhaust pathways, and a sample ejection port. The cryostat thermally isolates the magnet bore, thereby protecting the magnet and increasing cryogen efficiency. This novel design supports cryogenic MAS-DNP performance over an array of probes without altering DNP functionality. We present three MAS probes (two supporting 3.2 mm rotors and one supporting 9.5 mm rotors) interfacing with the single cryostat. Mechanical details, transmission line radio frequency design, and performance of the cryostat and three probes are described.


Journal of Magnetic Resonance | 2018

Electron decoupling with cross polarization and dynamic nuclear polarization below 6 K

Erika L. Sesti; Edward P. Saliba; Nicholas Alaniva; Alexander B. Barnes

Dynamic nuclear polarization (DNP) can improve nuclear magnetic resonance (NMR) sensitivity by orders of magnitude. Polarizing agents containing unpaired electrons required for DNP can broaden nuclear resonances in the presence of appreciable hyperfine couplings. Here we present the first cross polarization experiments implemented with electron decoupling, which attenuates detrimental hyperfine couplings. We also demonstrate magic angle spinning (MAS) DNP experiments below 6 K, producing unprecedented nuclear spin polarization in rotating solids. 13C correlation spectra were collected with MAS DNP below 6 K for the first time. Polarization build-up times with MAS DNP (T1DNP, 1H) of urea in a frozen glassy matrix below 6 K were measured for both the solid effect and the cross effect. Trityl radicals exhibit a T1DNP (1H) of 18.7 s and the T1DNP (1H) of samples doped with 20 mM AMUPol is only 1.3 s. MAS below 6 K with DNP and electron decoupling is an effective strategy to increase NMR signal-to-noise ratios per transient while retaining short polarization periods.

Collaboration


Dive into the Erika L. Sesti's collaboration.

Top Co-Authors

Avatar

Sophia E. Hayes

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Alexander B. Barnes

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Edward P. Saliba

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Nicholas Alaniva

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Faith J. Scott

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Brice J. Albert

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

D. Saha

University of Florida

View shared research outputs
Top Co-Authors

Avatar

Dustin D. Wheeler

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Eric J. Choi

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge