Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander B. Barnes is active.

Publication


Featured researches published by Alexander B. Barnes.


IEEE Transactions on Plasma Science | 2010

Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance

Antonio C. Torrezan; Seong-Tae Han; Ivan Mastovsky; Michael A. Shapiro; Jagadishwar R. Sirigiri; Richard J. Temkin; Alexander B. Barnes; Robert G. Griffin

The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%.


Physical Chemistry Chemical Physics | 2010

Dynamic nuclear polarization-enhanced solid-state NMR spectroscopy of GNNQQNY nanocrystals and amyloid fibrils

Galia T. Debelouchina; Marvin J. Bayro; Patrick C.A. van der Wel; Marc A. Caporini; Alexander B. Barnes; Melanie Rosay; Werner E. Maas; Robert G. Griffin

Dynamic nuclear polarization (DNP) utilizes the inherently larger polarization of electrons to enhance the sensitivity of conventional solid-state NMR experiments at low temperature. Recent advances in instrumentation development and sample preparation have transformed this field and have opened up new opportunities for its application to biological systems. Here, we present DNP-enhanced (13)C-(13)C and (15)N-(13)C correlation experiments on GNNQQNY nanocrystals and amyloid fibrils acquired at 9.4 T and 100 K and demonstrate that DNP can be used to obtain assignments and site-specific structural information very efficiently. We investigate the influence of temperature on the resolution, molecular conformation, structural integrity and dynamics in these two systems. In addition, we assess the low-temperature performance of two commonly used solid-state NMR experiments, proton-driven spin diffusion (PDSD) and transferred echo double resonance (TEDOR), and discuss their potential as tools for measurement of structurally relevant distances at low temperature in combination with DNP.


Journal of the American Chemical Society | 2011

High-field dynamic nuclear polarization with high-spin transition metal ions.

Bj€orn Corzilius; Albert A. Smith; Alexander B. Barnes; Claudio Luchinat; Ivano Bertini; Robert G. Griffin

We report the dynamic nuclear polarization of (1)H spins in magic-angle-spinning spectra recorded at 5 T and 84 K via the solid effect using Mn(2+) and Gd(3+) complexes as polarizing agents. We show that the magnitude of the enhancements can be directly related to the effective line width of the central (m(S) = -1/2 → +1/2) EPR transition. Using a Gd(3+) complex with a narrow central transition EPR line width of 29 MHz, we observed a maximum enhancement of ∼13, which is comparable to previous results on the narrow-line-width trityl radical.


Physical Chemistry Chemical Physics | 2010

Resolution and Polarization Distribution in Cryogenic DNP/MAS Experiments

Alexander B. Barnes; Björn Corzilius; Melody L. Mak-Jurkauskas; Loren B. Andreas; Vikram S. Bajaj; Yoh Matsuki; Marina Belenky; Johan Lugtenburg; Jagadishwar R. Sirigiri; Richard J. Temkin; Judith Herzfeld; Robert G. Griffin

This contribution addresses four potential misconceptions associated with high-resolution dynamic nuclear polarization/magic angle spinning (DNP/MAS) experiments. First, spectral resolution is not generally compromised at the cryogenic temperatures at which DNP experiments are performed. As we demonstrate at a modest field of 9 T (380 MHz (1)H), 1 ppm linewidths are observed in DNP/MAS spectra of a membrane protein in its native lipid bilayer, and <0.4 ppm linewidths are reported in a crystalline peptide at 85 K. Second, we address the concerns about paramagnetic broadening in DNP/MAS spectra of proteins by demonstrating that the exogenous radical polarizing agents utilized for DNP are distributed in the sample in such a manner as to avoid paramagnetic broadening and thus maintain full spectral resolution. Third, the enhanced polarization is not localized around the polarizing agent, but rather is effectively and uniformly dispersed throughout the sample, even in the case of membrane proteins. Fourth, the distribution of polarization from the electron spins mediated via spin diffusion between (1)H-(1)H strongly dipolar coupled spins is so rapid that shorter magnetization recovery periods between signal averaging transients can be utilized in DNP/MAS experiments than in typical experiments performed at ambient temperature.


Journal of Chemical Physics | 2012

Solid effect dynamic nuclear polarization and polarization pathways.

Albert A. Smith; Björn Corzilius; Alexander B. Barnes; Thorsten Maly; Robert G. Griffin

Using dynamic nuclear polarization (DNP)/nuclear magnetic resonance instrumentation that utilizes a microwave cavity and a balanced rf circuit, we observe a solid effect DNP enhancement of 94 at 5 T and 80 K using trityl radical as the polarizing agent. Because the buildup rate of the solid effect increases with microwave field strength, we obtain a sensitivity gain of 128. The data suggest that higher microwave field strengths would lead to further improvements in sensitivity. In addition, the observation of microwave field dependent enhancements permits us to draw conclusions about the path that polarization takes during the DNP process. By measuring the time constant for the polarization buildup and enhancement as a function of the microwave field strength, we are able to compare models of polarization transfer, and show that the major contribution to the bulk polarization arises via direct transfer from electrons, rather than transferring first to nearby nuclei and then transferring to bulk nuclei in a slow diffusion step. In addition, the model predicts that nuclei near the electron receive polarization that can relax, decrease the electron polarization, and attenuate the DNP enhancement. The magnitude of this effect depends on the number of near nuclei participating in the polarization transfer, hence the size of the diffusion barrier, their T(1), and the transfer rate. Approaches to optimizing the DNP enhancement are discussed.


Journal of Magnetic Resonance | 2012

Dynamic nuclear polarization at 700 MHz/460 GHz

Alexander B. Barnes; Evgeny Markhasin; Eugenio Daviso; Vladimir K. Michaelis; Emilio A. Nanni; Sudheer Jawla; Elijah L. Mena; Ronald DeRocher; Ajay Thakkar; Paul P. Woskov; Judith Herzfeld; Richard J. Temkin; Robert G. Griffin

We describe the design and implementation of the instrumentation required to perform DNP-NMR at higher field strengths than previously demonstrated, and report the first magic-angle spinning (MAS) DNP-NMR experiments performed at (1)H/e(-) frequencies of 700 MHz/460 GHz. The extension of DNP-NMR to 16.4 T has required the development of probe technology, cryogenics, gyrotrons, and microwave transmission lines. The probe contains a 460 GHz microwave channel, with corrugated waveguide, tapers, and miter-bends that couple microwave power to the sample. Experimental efficiency is increased by a cryogenic exchange system for 3.2 mm rotors within the 89 mm bore. Sample temperatures ≤85 K, resulting in improved DNP enhancements, are achieved by a novel heat exchanger design, stainless steel and brass vacuum jacketed transfer lines, and a bronze probe dewar. In addition, the heat exchanger is preceded with a nitrogen drying and generation system in series with a pre-cooling refrigerator. This reduces liquid nitrogen usage from >700 l per day to <200 l per day and allows for continuous (>7 days) cryogenic spinning without detrimental frost or ice formation. Initial enhancements, ε=-40, and a strong microwave power dependence suggests the possibility for considerable improvement. Finally, two-dimensional spectra of a model system demonstrate that the higher field provides excellent resolution, even in a glassy, cryoprotecting matrix.


Journal of Magnetic Resonance | 2011

Microwave Field Distribution in a Magic Angle Spinning Dynamic Nuclear Polarization NMR Probe

Emilio A. Nanni; Alexander B. Barnes; Yoh Matsuki; Paul P. Woskov; Björn Corzilius; Robert G. Griffin; Richard J. Temkin

We present a calculation of the microwave field distribution in a magic angle spinning (MAS) probe utilized in dynamic nuclear polarization (DNP) experiments. The microwave magnetic field (B(1S)) profile was obtained from simulations performed with the High Frequency Structure Simulator (HFSS) software suite, using a model that includes the launching antenna, the outer Kel-F stator housing coated with Ag, the RF coil, and the 4mm diameter sapphire rotor containing the sample. The predicted average B(1S) field is 13μT/W(1/2), where S denotes the electron spin. For a routinely achievable input power of 5W the corresponding value is γ(S)B(1S)=0.84MHz. The calculations provide insights into the coupling of the microwave power to the sample, including reflections from the RF coil and diffraction of the power transmitted through the coil. The variation of enhancement with rotor wall thickness was also successfully simulated. A second, simplified calculation was performed using a single pass model based on Gaussian beam propagation and Fresnel diffraction. This model provided additional physical insight and was in good agreement with the full HFSS simulation. These calculations indicate approaches to increasing the coupling of the microwave power to the sample, including the use of a converging lens and fine adjustment of the spacing of the windings of the RF coil. The present results should prove useful in optimizing the coupling of microwave power to the sample in future DNP experiments. Finally, the results of the simulation were used to predict the cross effect DNP enhancement (ϵ) vs. ω(1S)/(2π) for a sample of (13)C-urea dissolved in a 60:40 glycerol/water mixture containing the polarizing agent TOTAPOL; very good agreement was obtained between theory and experiment.


Biochemistry | 2013

Dynamic Nuclear Polarization Study of Inhibitor Binding to the M218-60 Proton Transporter from Influenza A

Loren B. Andreas; Alexander B. Barnes; Björn Corzilius; James J. Chou; Eric Miller; Marc A. Caporini; Melanie Rosay; Robert G. Griffin

We demonstrate the use of dynamic nuclear polarization (DNP) to elucidate ligand binding to a membrane protein using dipolar recoupling magic angle spinning (MAS) NMR. In particular, we detect drug binding in the proton transporter M2(18-60) from influenza A using recoupling experiments at room temperature and with cryogenic DNP. The results indicate that the pore binding site of rimantadine is correlated with previously reported widespread chemical shift changes, suggesting functional binding in the pore. Futhermore, the (15)N-labeled ammonium of rimantadine was observed near A30 (13)Cβ and G34 (13)Cα, suggesting a possible hydrogen bond to A30 carbonyl. Cryogenic DNP was required to observe the weaker external binding site(s) in a ZF-TEDOR spectrum. This approach is generally applicable, particularly for weakly bound ligands, in which case the application of MAS NMR dipolar recoupling requires the low temperatures to quench dynamic exchange processes. For the fully protonated samples investigated, we observed DNP signal enhancements of ~10 at 400 MHz using only 4-6 mM of the polarizing agent TOTAPOL. At 600 MHz and with DNP, we measured a distance between the drug and the protein to a precision of 0.2 Å.


Journal of Magnetic Resonance | 2012

A 250 GHz Gyrotron with a 3 GHz Tuning Bandwidth for Dynamic Nuclear Polarization

Alexander B. Barnes; Emilio A. Nanni; Judith Herzfeld; Robert G. Griffin; Richard J. Temkin

We describe the design and implementation of a novel tunable 250 GHz gyrotron oscillator with >10 W output power over most of a 3 GHz band and >35 W peak power. The tuning bandwidth and power are sufficient to generate a >1 MHz nutation frequency across the entire nitroxide EPR lineshape for cross effect DNP, as well as to excite solid effect transitions utilizing other radicals, without the need for sweeping the NMR magnetic field. Substantially improved tunability is achieved by implementing a long (23 mm) interaction cavity that can excite higher order axial modes by changing either the magnetic field of the gyrotron or the cathode potential. This interaction cavity excites the rotating TE(₅,₂,q) mode, and an internal mode converter outputs a high-quality microwave beam with >94% Gaussian content. The gyrotron was integrated into a DNP spectrometer, resulting in a measured DNP enhancement of 54 on the membrane protein bacteriorhodopsin.


Solid State Nuclear Magnetic Resonance | 2015

Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization.

Daniel E.M. Hoff; Brice J. Albert; Edward P. Saliba; Faith J. Scott; Eric J. Choi; Michael Mardini; Alexander B. Barnes

Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198GHz MAS DNP probe. Our calculations show that a microwave power input of 17W is required to generate an average EPR nutation frequency of 0.84MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions.

Collaboration


Dive into the Alexander B. Barnes's collaboration.

Top Co-Authors

Avatar

Robert G. Griffin

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Richard J. Temkin

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Emilio A. Nanni

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Björn Corzilius

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Edward P. Saliba

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Brice J. Albert

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Erika L. Sesti

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Faith J. Scott

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Paul P. Woskov

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge