Erika Pedrosa
Albert Einstein College of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erika Pedrosa.
PLOS ONE | 2011
Mingyan Lin; Erika Pedrosa; Abhishek Shah; Anastasia Hrabovsky; Shahina Maqbool; Deyou Zheng; Herbert M. Lachman
Genome-wide expression analysis using next generation sequencing (RNA-Seq) provides an opportunity for in-depth molecular profiling of fundamental biological processes, such as cellular differentiation and malignant transformation. Differentiating human neurons derived from induced pluripotent stem cells (iPSCs) provide an ideal system for RNA-Seq since defective neurogenesis caused by abnormalities in transcription factors, DNA methylation, and chromatin modifiers lie at the heart of some neuropsychiatric disorders. As a preliminary step towards applying next generation sequencing using neurons derived from patient-specific iPSCs, we have carried out an RNA-Seq analysis on control human neurons. Dramatic changes in the expression of coding genes, long non-coding RNAs (lncRNAs), pseudogenes, and splice isoforms were seen during the transition from pluripotent stem cells to early differentiating neurons. A number of genes that undergo radical changes in expression during this transition include candidates for schizophrenia (SZ), bipolar disorder (BD) and autism spectrum disorders (ASD) that function as transcription factors and chromatin modifiers, such as POU3F2 and ZNF804A, and genes coding for cell adhesion proteins implicated in these conditions including NRXN1 and NLGN1. In addition, a number of novel lncRNAs were found to undergo dramatic changes in expression, one of which is HOTAIRM1, a regulator of several HOXA genes during myelopoiesis. The increase we observed in differentiating neurons suggests a role in neurogenesis as well. Finally, several lncRNAs that map near SNPs associated with SZ in genome wide association studies also increase during neuronal differentiation, suggesting that these novel transcripts may be abnormally regulated in a subgroup of patients.
American Journal of Medical Genetics | 2007
Herbert M. Lachman; Erika Pedrosa; Oriana A. Petruolo; Melissa S. Cockerham; Alexander Papolos; T. Novak; Demitri F. Papolos; Pavla Stopkova
The analysis of submicroscopic copy number variations (CNVs), also known as copy number polymorphisms (CNPs), is emerging as a new tool for understanding the genetic basis of cancer, developmental disorders, and complex traits. One area where this may be particularly useful is in the identification of genetic variants underlying schizophrenia (SZ) and bipolar disorder (BD). Linkage analysis and pharmacological studies carried out over the past decade have implicated a number of positional and physiological candidate genes. Yet, despite extensive analysis, the underlying allelic variants responsible for disease susceptibility have remained, largely, elusive. Although the borders of most CNV have not been precisely mapped, it appears that a considerable number of SZ and BD candidate genes have their coding elements disrupted by polymorphic CNVs, suggesting that these would be good variants to consider for underlying disease susceptibility. One such gene is GSK3β, which codes for glycogen synthase kinase, a key component of the Wnt signaling pathway and a target of lithium salts. A CNV in the GSK3β locus at chromosome 3q13.3 appears to disrupt the genes 3′‐coding elements. The CNV also affects two other annotated genes. We now report that patients with BD have an increased frequency of this CNV—primarily the duplication variant—compared with controls (P = 0.002). The finding suggests that GSK3β may be involved in BD susceptibility in some individuals and that CNVs in this and other candidate genes for psychiatric disorders should be analyzed as causative functional genetic variants.
Journal of Neurogenetics | 2011
Erika Pedrosa; Vladislav Sandler; Abhishek Shah; Reed C. Carroll; Chanjung Chang; Shira Rockowitz; Xingyi Guo; Deyou Zheng; Herbert M. Lachman
Abstract: Induced pluripotent stem cell (iPSC) technology has the potential to transform regenerative medicine. It also offers a powerful tool for establishing in vitro models of disease, in particular, for neuropsychiatric disorders where live human neurons are essentially impossible to procure. Using iPSCs derived from three schizophrenia (SZ) patients, one of whom has 22q11.2del (velocardiofacial syndrome; VCFS), the authors developed a culture system to study SZ on a molecular and cellular level. SZ iPSCs were differentiated into functional, primarily glutamatergic neurons that were able to fire action potentials after ∼8 weeks in culture. Early differentiating neurons expressed a number of transcription factors/chromatin remodeling proteins and synaptic proteins relevant to SZ pathogenesis, including ZNF804A, RELN, CNTNAP2, CTNNA2, SMARCA2, and NRXN1. Although a small number of lines were developed in this preliminary study, the SZ line containing 22q11.2del showed a significant delay in the reduction of endogenous OCT4 and NANOG expression that normally occurs during differentiation. Constitutive expression of OCT4 has been observed in Dgcr8-deficient mouse embryonic stem cells (mESCs); DGCR8 maps to the 22q11.2-deleted region. These findings demonstrate that the method of inducing neural differentiation employed is useful for disease modeling in SZ and that the transition of iPSCs with 22q11.2 deletions towards a differentiated state may be marked by subtle changes in expression of pluripotency-associated genes.
PLOS ONE | 2012
Mingyan Lin; Anastasia Hrabovsky; Erika Pedrosa; Tao Wang; Deyou Zheng; Herbert M. Lachman
Stochastic processes and imprinting, along with genetic factors, lead to monoallelic or allele-biased gene expression. Stochastic monoallelic expression fine-tunes information processing in immune cells and the olfactory system, and imprinting plays an important role in development. Recent studies suggest that both stochastic events and imprinting may be more widespread than previously considered. We are interested in allele-biased gene expression occurring in the brain because parent-of-origin effects suggestive of imprinting appear to play a role in the transmission of schizophrenia (SZ) and autism spectrum disorders (ASD) in some families. In addition, allele-biased expression could help explain monozygotic (MZ) twin discordance and reduced penetrance. The ability to study allele-biased expression in human neurons has been transformed with the advent of induced pluripotent stem cell (iPSC) technology and next generation sequencing. Using transcriptome sequencing (RNA-Seq) we identified 801 genes in differentiating neurons that were expressed in an allele-biased manner. These included a number of putative SZ and ASD candidates, such as A2BP1 (RBFOX1), ERBB4, NLGN4X, NRG1, NRG3, NRXN1, and NLGN1. Overall, there was a modest enrichment for SZ and ASD candidate genes among those that showed evidence for allele-biased expression (chi-square, p = 0.02). In addition to helping explain MZ twin discordance and reduced penetrance, the capacity to group many candidate genes affecting a variety of molecular and cellular pathways under a common regulatory process – allele-biased expression – could have therapeutic implications.
Molecular Autism | 2015
Ping Wang; Mingyan Lin; Erika Pedrosa; Anastasia Hrabovsky; Zheng Zhang; Wenjun Guo; Herbert M. Lachman; Deyou Zheng
BackgroundDisruptive mutation in the CHD8 gene is one of the top genetic risk factors in autism spectrum disorders (ASDs). Previous analyses of genome-wide CHD8 occupancy and reduced expression of CHD8 by shRNA knockdown in committed neural cells showed that CHD8 regulates multiple cell processes critical for neural functions, and its targets are enriched with ASD-associated genes.MethodsTo further understand the molecular links between CHD8 functions and ASD, we have applied the CRISPR/Cas9 technology to knockout one copy of CHD8 in induced pluripotent stem cells (iPSCs) to better mimic the loss-of-function status that would exist in the developing human embryo prior to neuronal differentiation. We then carried out transcriptomic and bioinformatic analyses of neural progenitors and neurons derived from the CHD8 mutant iPSCs.ResultsTranscriptome profiling revealed that CHD8 hemizygosity (CHD8+/−) affected the expression of several thousands of genes in neural progenitors and early differentiating neurons. The differentially expressed genes were enriched for functions of neural development, β-catenin/Wnt signaling, extracellular matrix, and skeletal system development. They also exhibited significant overlap with genes previously associated with autism and schizophrenia, as well as the downstream transcriptional targets of multiple genes implicated in autism. Providing important insight into how CHD8 mutations might give rise to macrocephaly, we found that seven of the twelve genes associated with human brain volume or head size by genome-wide association studies (e.g., HGMA2) were dysregulated in CHD8+/− neural progenitors or neurons.ConclusionsWe have established a renewable source of CHD8+/− iPSC lines that would be valuable for investigating the molecular and cellular functions of CHD8. Transcriptomic profiling showed that CHD8 regulates multiple genes implicated in ASD pathogenesis and genes associated with brain volume.
Schizophrenia Research | 2008
Erika Pedrosa; Radu Stefanescu; Benjamin Margolis; Oriana A. Petruolo; Yungtai Lo; Karen A. Nolan; T. Novak; Pavla Stopkova; Herbert M. Lachman
Cadherins and protocadherins are cell adhesion proteins that play an important role in neuronal migration, differentiation and synaptogenesis, properties that make them targets to consider in schizophrenia (SZ) and bipolar disorder (BD) pathogenesis. Consequently, allelic variation occurring in protocadherin and cadherin encoding genes that map to regions of the genome targeted in SZ and BD linkage studies are particularly strong candidates to consider. One such set of candidate genes is the 5q31-linked PCDH family, which consists of more than 50 exons encoding three related, though distinct family members--alpha, beta, and gamma--which can generate thousands of different protocadherin proteins through alternative promoter usage and cis-alternative splicing. In this study, we focused on a SNP, rs31745, which is located in a putative PCDHalpha enhancer mapped by ChIP-chip using antibodies to covalently modified histone H3. A striking increase in homozygotes for the minor allele at this locus was detected in patients with BD. Molecular analysis revealed that the SNP causes allele-specific changes in binding to a brain protein. The findings suggest that the 5q31-linked PCDH locus should be more thoroughly considered as a disease-susceptibility locus in psychiatric disorders.
PLOS ONE | 2015
Dejian Zhao; Mingyan Lin; Jian Chen; Erika Pedrosa; Anastasia Hrabovsky; H. Matthew Fourcade; Deyou Zheng; Herbert M. Lachman
We are using induced pluripotent stem cell (iPSC) technology to study neuropsychiatric disorders associated with 22q11.2 microdeletions (del), the most common known schizophrenia (SZ)-associated genetic factor. Several genes in the region have been implicated; a promising candidate is DGCR8, which codes for a protein involved in microRNA (miRNA) biogenesis. We carried out miRNA expression profiling (miRNA-seq) on neurons generated from iPSCs derived from controls and SZ patients with 22q11.2 del. Using thresholds of p<0.01 for nominal significance and 1.5-fold differences in expression, 45 differentially expressed miRNAs were detected (13 lower in SZ and 32 higher). Of these, 6 were significantly down-regulated in patients after correcting for genome wide significance (FDR<0.05), including 4 miRNAs that map to the 22q11.2 del region. In addition, a nominally significant increase in the expression of several miRNAs was found in the 22q11.2 neurons that were previously found to be differentially expressed in autopsy samples and peripheral blood in SZ and autism spectrum disorders (e.g., miR-34, miR-4449, miR-146b-3p, and miR-23a-5p). Pathway and function analysis of predicted mRNA targets of the differentially expressed miRNAs showed enrichment for genes involved in neurological disease and psychological disorders for both up and down regulated miRNAs. Our findings suggest that: i. neurons with 22q11.2 del recapitulate the miRNA expression patterns expected of 22q11.2 haploinsufficiency, ii. differentially expressed miRNAs previously identified using autopsy samples and peripheral cells, both of which have significant methodological problems, are indeed disrupted in neuropsychiatric disorders and likely have an underlying genetic basis.
American Journal of Medical Genetics | 2006
Herbert M. Lachman; Erika Pedrosa; Karen A. Nolan; Max Glass; Kenny Ye; Takuya Saito
Linkage analysis and association studies have pointed to neuregulin 1 (NRG1) as the prime candidate for 8p‐linked schizophrenia (SZ). However, so far, no specific functional alleles in the genes exons, intron–exon junctions and promoters have been identified that are unequivocally associated with SZ. In this study, we analyzed several NRG1 polymorphisms that affect ATTT motifs and AT‐rich regions of the gene. We have previously identified a number of such polymorphisms in the promoters of other SZ and bipolar disorder (BD) candidate genes and found positive associations to several of them. In addition, allele specific differences in the binding of brain proteins have been found for many of the polymorphisms. A case control design was used to compare allele frequencies in Caucasian and African American patients with SZ and controls. In the African American group, a significant difference was found in the allele and genotype distribution for several of the markers and haplotype blocks located in the 5′‐ and 3′‐ends of the gene. The most significant result was obtained for rs6150532, an insertion/deletion variant in a conserved region of an intron that separates two small, alternatively spliced exons. Allele‐specific and developmental differences were detected in the binding of a brain protein using newborn rat pups when probes containing the two rs6150532 alleles were used in electromobility gel shift assays. There were no significant differences in allele or genotype distribution found for any of the markers in the Caucasian sample. Although the samples size is relatively small, the findings support a role for NRG1 in SZ in African Americans and suggest that polymorphic differences in regions of the gene that recognize AT‐binding proteins may be a factor in disease pathogenesis.
PLOS ONE | 2013
Jian Chen; Mingyan Lin; John J. Foxe; Erika Pedrosa; Anastasia Hrabovsky; Reed C. Carroll; Deyou Zheng; Herbert M. Lachman
Induced pluripotent stem cell (iPSC) technology is providing an opportunity to study neuropsychiatric disorders through the capacity to grow patient-specific neurons in vitro. Skin fibroblasts obtained by biopsy have been the most reliable source of cells for reprogramming. However, using other somatic cells obtained by less invasive means would be ideal, especially in children with autism spectrum disorders (ASD) and other neurodevelopmental conditions. In addition to fibroblasts, iPSCs have been developed from cord blood, lymphocytes, hair keratinocytes, and dental pulp from deciduous teeth. Of these, dental pulp would be a good source for neurodevelopmental disorders in children because obtaining material is non-invasive. We investigated its suitability for disease modeling by carrying out gene expression profiling, using RNA-seq, on differentiated neurons derived from iPSCs made from dental pulp extracted from deciduous teeth (T-iPSCs) and fibroblasts (F-iPSCs). This is the first RNA-seq analysis comparing gene expression profiles in neurons derived from iPSCs made from different somatic cells. For the most part, gene expression profiles were quite similar with only 329 genes showing differential expression at a nominally significant p-value (p<0.05), of which 63 remained significant after correcting for genome-wide analysis (FDR <0.05). The most striking difference was the lower level of expression detected for numerous members of the all four HOX gene families in neurons derived from T-iPSCs. In addition, an increased level of expression was seen for several transcription factors expressed in the developing forebrain (FOXP2, OTX1, and LHX2, for example). Overall, pathway analysis revealed that differentially expressed genes that showed higher levels of expression in neurons derived from T-iPSCs were enriched for genes implicated in schizophrenia (SZ). The findings suggest that neurons derived from T-iPSCs are suitable for disease-modeling neuropsychiatric disorder and may have some advantages over those derived from F-iPSCs.
American Journal of Medical Genetics | 2007
Erika Pedrosa; Kenny Ye; Karen A. Nolan; Lauren Morrell; Jeffrey M. Okun; Adam D. Persky; Takuya Saito; Herbert M. Lachman
Dysbindin (DTNBP1) is a positional candidate gene for 6p22.3‐linked schizophrenia (SZ). However, so far, no disease‐causing alleles have been identified. DTNBP1 is immediately adjacent to JARID2, a member of the ARID (AT‐rich interaction domain) family of transcription modulators. We have previously suggested that proteins which bind to AT‐rich domains could play a role in SZ pathogenesis. Consequently, we explored the possibility that JARID2 itself could be a candidate gene for 6p22.3‐linked SZ. We used a case control design to analyze single nucleotide polymorphisms (SNPs) and insertion/deletion variants affecting AT‐rich domains in both the DTNBP1 and JARID2 genes. Three of the DTNBP1 SNPs analyzed had previously been shown to be associated with SZ. We did not detect any significant difference in allele, genotype or haplotype distribution for any of these DTNBP1 markers. However, we did detect a significant difference in allele distribution for a tetranucleotide repeat polymorphism in the JARID2 gene that affects an AT‐rich domain. A significant increase in short alleles (less than 11 repeats) was found in patients with SZ (χ2 = 7.02; P = 0.008). No other JARID2 marker displayed statistically significant allele and genotype distributions. Our findings suggest that JARID2 should be viewed as a candidate gene for 6p22.3‐linked SZ.