Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deyou Zheng is active.

Publication


Featured researches published by Deyou Zheng.


Cell | 2010

Distinct Factors Control Histone Variant H3.3 Localization at Specific Genomic Regions

Aaron D. Goldberg; Laura A. Banaszynski; Kyung-Min Noh; Peter W. Lewis; Simon J. Elsaesser; Sonja C. Stadler; Scott Dewell; Martin Law; Xingyi Guo; Xuan Li; Duancheng Wen; Ariane Chapgier; Russell DeKelver; Jeffrey C. Miller; Ya Li Lee; Elizabeth A. Boydston; Michael C. Holmes; Philip D. Gregory; John M. Greally; Shahin Rafii; Chingwen Yang; Peter J. Scambler; David Garrick; Richard J. Gibbons; Douglas R. Higgs; Ileana M. Cristea; Fyodor D. Urnov; Deyou Zheng; C. David Allis

The incorporation of histone H3 variants has been implicated in the epigenetic memory of cellular state. Using genome editing with zinc-finger nucleases to tag endogenous H3.3, we report genome-wide profiles of H3 variants in mammalian embryonic stem cells and neuronal precursor cells. Genome-wide patterns of H3.3 are dependent on amino acid sequence and change with cellular differentiation at developmentally regulated loci. The H3.3 chaperone Hira is required for H3.3 enrichment at active and repressed genes. Strikingly, Hira is not essential for localization of H3.3 at telomeres and many transcription factor binding sites. Immunoaffinity purification and mass spectrometry reveal that the proteins Atrx and Daxx associate with H3.3 in a Hira-independent manner. Atrx is required for Hira-independent localization of H3.3 at telomeres and for the repression of telomeric RNA. Our data demonstrate that multiple and distinct factors are responsible for H3.3 localization at specific genomic locations in mammalian cells.


Cell | 2013

Glucocorticoid Receptor Confers Resistance to Antiandrogens by Bypassing Androgen Receptor Blockade

Vivek K. Arora; Emily Schenkein; Rajmohan Murali; Sumit K. Subudhi; John Wongvipat; Minna D. Balbas; Neel Shah; Ling Cai; Chris Logothetis; Deyou Zheng; Charles L. Sawyers

The treatment of advanced prostate cancer has been transformed by novel antiandrogen therapies such as enzalutamide. Here, we identify induction of glucocorticoid receptor (GR) expression as a common feature of drug-resistant tumors in a credentialed preclinical model, a finding also confirmed in patient samples. GR substituted for the androgen receptor (AR) to activate a similar but distinguishable set of target genes and was necessary for maintenance of the resistant phenotype. The GR agonist dexamethasone was sufficient to confer enzalutamide resistance, whereas a GR antagonist restored sensitivity. Acute AR inhibition resulted in GR upregulation in a subset of prostate cancer cells due to relief of AR-mediated feedback repression of GR expression. These findings establish a mechanism of escape from AR blockade through expansion of cells primed to drive AR target genes via an alternative nuclear receptor upon drug exposure.


Nature | 2015

Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice

Rene C. Adam; Hanseul Yang; Shira Rockowitz; Samantha B. Larsen; Maria Nikolova; Daniel Oristian; Lisa Polak; Meelis Kadaja; Amma Asare; Deyou Zheng; Elaine Fuchs

Adult stem cells occur in niches that balance self-renewal with lineage selection and progression during tissue homeostasis. Following injury, culture or transplantation, stem cells outside their niche often display fate flexibility. Here we show that super-enhancers underlie the identity, lineage commitment and plasticity of adult stem cells in vivo. Using hair follicle as a model, we map the global chromatin domains of hair follicle stem cells and their committed progenitors in their native microenvironments. We show that super-enhancers and their dense clusters (‘epicentres’) of transcription factor binding sites undergo remodelling upon lineage progression. New fate is acquired by decommissioning old and establishing new super-enhancers and/or epicentres, an auto-regulatory process that abates one master regulator subset while enhancing another. We further show that when outside their niche, either in vitro or in wound-repair, hair follicle stem cells dynamically remodel super-enhancers in response to changes in their microenvironment. Intriguingly, some key super-enhancers shift epicentres, enabling their genes to remain active and maintain a transitional state in an ever-changing transcriptional landscape. Finally, we identify SOX9 as a crucial chromatin rheostat of hair follicle stem cell super-enhancers, and provide functional evidence that super-enhancers are dynamic, dense transcription-factor-binding platforms which are acutely sensitive to pioneer master regulators whose levels define not only spatial and temporal features of lineage-status but also stemness, plasticity in transitional states and differentiation.


Nature | 2010

ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours

Ping Chi; Yu Chen; Lei Zhang; Xingyi Guo; John Wongvipat; Tambudzai Shamu; Jonathan A. Fletcher; Scott Dewell; Robert G. Maki; Deyou Zheng; Cristina R. Antonescu; C. David Allis; Charles L. Sawyers

Gastrointestinal stromal tumour (GIST) is the most common human sarcoma and is primarily defined by activating mutations in the KIT or PDGFRA receptor tyrosine kinases1,2. KIT is highly expressed in interstitial cells of Cajal (ICCs)—the presumed cell of origin for GIST—as well as in hematopoietic stem cells, melanocytes, mast cells and germ cells2,3. Yet, families harbouring germline activating KIT mutations and mice with knock-in Kit mutations almost exclusively develop ICC hyperplasia and GIST4–7, suggesting that the cellular context is important for KIT to mediated oncogenesis. Here we show that the ETS family member ETV1 is highly expressed in the subtypes of ICCs sensitive to oncogenic KIT mediated transformation8, and is required for their development. In addition, ETV1 is universally highly expressed in GISTs and is required for growth of imatinib-sensitive and resistant GIST cell lines. Transcriptome profiling and global analyses of ETV1-binding sites suggest that ETV1 is a master regulator of an ICC-GIST-specific transcription network mainly through enhancer binding. The ETV1 transcriptional program is further regulated by activated KIT, which prolongs ETV1 protein stability and cooperates with ETV1 to promote tumourigenesis. We propose that GIST arises from ICCs with high levels of endogenous ETV1 expression that, when coupled with an activating KIT mutation, drives an oncogenic ETS transcription program. This differs from other ETS-dependent tumours such as prostate cancer, melanoma, and Ewing sarcoma where genomic translocation or amplification drives aberrant ETS expression9–11 and represents a novel mechanism of oncogenic transcription factor activation.Gastrointestinal stromal tumour (GIST) is the most common human sarcoma and is primarily defined by activating mutations in the KIT or PDGFRA receptor tyrosine kinases. KIT is highly expressed in interstitial cells of Cajal (ICCs)—the presumed cell of origin for GIST—as well as in haematopoietic stem cells, melanocytes, mast cells and germ cells. Yet, families harbouring germline activating KIT mutations and mice with knock-in Kit mutations almost exclusively develop ICC hyperplasia and GIST, suggesting that the cellular context is important for KIT to mediate oncogenesis. Here we show that the ETS family member ETV1 is highly expressed in the subtypes of ICCs sensitive to oncogenic KIT mediated transformation, and is required for their development. In addition, ETV1 is universally highly expressed in GISTs and is required for growth of imatinib-sensitive and resistant GIST cell lines. Transcriptome profiling and global analyses of ETV1-binding sites suggest that ETV1 is a master regulator of an ICC-GIST-specific transcription network mainly through enhancer binding. The ETV1 transcriptional program is further regulated by activated KIT, which prolongs ETV1 protein stability and cooperates with ETV1 to promote tumorigenesis. We propose that GIST arises from ICCs with high levels of endogenous ETV1 expression that, when coupled with an activating KIT mutation, drives an oncogenic ETS transcriptional program. This differs from other ETS-dependent tumours such as prostate cancer, melanoma and Ewing sarcoma where genomic translocation or amplification drives aberrant ETS expression. It also represents a novel mechanism of oncogenic transcription factor activation.


Cell | 2012

Endocardial Cells Form the Coronary Arteries by Angiogenesis through Myocardial-Endocardial VEGF Signaling

Bingruo Wu; Zheng Zhang; Wendy Lui; Xiangjian Chen; Yidong Wang; Alyssa Chamberlain; Ricardo A. Moreno-Rodriguez; Roger R. Markwald; Brian P. O’Rourke; David J. Sharp; Deyou Zheng; Jack Lenz; H. Scott Baldwin; Ching Pin Chang; Bin Zhou

The origins and developmental mechanisms of coronary arteries are incompletely understood. We show here by fate mapping, clonal analysis, and immunohistochemistry that endocardial cells generate the endothelium of coronary arteries. Dye tracking, live imaging, and tissue transplantation also revealed that ventricular endocardial cells are not terminally differentiated; instead, they are angiogenic and form coronary endothelial networks. Myocardial Vegf-a or endocardial Vegfr-2 deletion inhibited coronary angiogenesis and arterial formation by ventricular endocardial cells. In contrast, lineage and knockout studies showed that endocardial cells make a small contribution to the coronary veins, the formation of which is independent of myocardial-to-endocardial Vegf signaling. Thus, contrary to the current view of a common source for the coronary vessels, our findings indicate that the coronary arteries and veins have distinct origins and are formed by different mechanisms. This information may help develop better cell therapies for coronary artery disease.


PLOS ONE | 2011

RNA-Seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders.

Mingyan Lin; Erika Pedrosa; Abhishek Shah; Anastasia Hrabovsky; Shahina Maqbool; Deyou Zheng; Herbert M. Lachman

Genome-wide expression analysis using next generation sequencing (RNA-Seq) provides an opportunity for in-depth molecular profiling of fundamental biological processes, such as cellular differentiation and malignant transformation. Differentiating human neurons derived from induced pluripotent stem cells (iPSCs) provide an ideal system for RNA-Seq since defective neurogenesis caused by abnormalities in transcription factors, DNA methylation, and chromatin modifiers lie at the heart of some neuropsychiatric disorders. As a preliminary step towards applying next generation sequencing using neurons derived from patient-specific iPSCs, we have carried out an RNA-Seq analysis on control human neurons. Dramatic changes in the expression of coding genes, long non-coding RNAs (lncRNAs), pseudogenes, and splice isoforms were seen during the transition from pluripotent stem cells to early differentiating neurons. A number of genes that undergo radical changes in expression during this transition include candidates for schizophrenia (SZ), bipolar disorder (BD) and autism spectrum disorders (ASD) that function as transcription factors and chromatin modifiers, such as POU3F2 and ZNF804A, and genes coding for cell adhesion proteins implicated in these conditions including NRXN1 and NLGN1. In addition, a number of novel lncRNAs were found to undergo dramatic changes in expression, one of which is HOTAIRM1, a regulator of several HOXA genes during myelopoiesis. The increase we observed in differentiating neurons suggests a role in neurogenesis as well. Finally, several lncRNAs that map near SNPs associated with SZ in genome wide association studies also increase during neuronal differentiation, suggesting that these novel transcripts may be abnormally regulated in a subgroup of patients.


Nature Structural & Molecular Biology | 2000

Protein NMR spectroscopy in structural genomics.

Gaetano T. Montelione; Deyou Zheng; Yuanpeng J. Huang; Kristin C. Gunsalus; Thomas Szyperski

Protein NMR spectroscopy provides an important complement to X-ray crystallography for structural genomics, both for determining three-dimensional protein structures and in characterizing their biochemical and biophysical functions.


Nucleic Acids Research | 2005

Transcribed processed pseudogenes in the human genome: an intermediate form of expressed retrosequence lacking protein-coding ability

Paul M. Harrison; Deyou Zheng; Zhaolei Zhang; Nicholas Carriero; Mark Gerstein

Pseudogenes, in the case of protein-coding genes, are gene copies that have lost the ability to code for a protein; they are typically identified through annotation of disabled, decayed or incomplete protein-coding sequences. Processed pseudogenes (PΨgs) are made through mRNA retrotransposition. There is overwhelming genomic evidence for thousands of human PΨgs and also dozens of human processed genes that comprise complete retrotransposed copies of other genes. Here, we survey for an intermediate entity, the transcribed processed pseudogene (TPΨg), which is disabled but nonetheless transcribed. TPΨgs may affect expression of paralogous genes, as observed in the case of the mouse makorin1-p1 TPΨg. To elucidate their role, we identified human TPΨgs by mapping expressed sequences onto PΨgs and, reciprocally, extracting TPΨgs from known mRNAs. We consider only those PΨgs that are homologous to either non-mammalian eukaryotic proteins or protein domains of known structure, and require detection of identical coding-sequence disablements in both the expressed and genomic sequences. Oligonucleotide microarray data provide further expression verification. Overall, we find 166–233 TPΨgs (∼4–6% of PΨgs). Proteins/transcripts with the highest numbers of homologous TPΨgs generally have many homologous PΨgs and are abundantly expressed. TPΨgs are significantly over-represented near both the 5′ and 3′ ends of genes; this suggests that TPΨgs can be formed through gene–promoter co-option, or intrusion into untranslated regions. However, roughly half of the TPΨgs are located away from genes in the intergenic DNA and thus may be co-opting cryptic promoters of undesignated origin. Furthermore, TPΨgs are unlike other PΨgs and processed genes in the following ways: (i) they do not show a significant tendency to either deposit on or originate from the X chromosome; (ii) only 5% of human TPΨgs have potential orthologs in mouse. This latter finding indicates that the vast majority of TPΨgs is lineage specific. This is likely linked to well-documented extensive lineage-specific SINE/LINE activity. The list of TPΨgs is available at: (or) .


Nature Medicine | 2013

ETS factors reprogram the androgen receptor cistrome and prime prostate tumorigenesis in response to PTEN loss

Yu Chen; Ping Chi; Shira Rockowitz; Phillip J. Iaquinta; Tambudzai Shamu; Shipra Shukla; Dong Gao; Inna Sirota; Brett S. Carver; John Wongvipat; Howard I. Scher; Deyou Zheng; Charles L. Sawyers

Studies of ETS-mediated prostate oncogenesis have been hampered by a lack of suitable experimental systems. Here we describe a new conditional mouse model that shows robust, homogenous ERG expression throughout the prostate. When combined with homozygous Pten loss, the mice developed accelerated, highly penetrant invasive prostate cancer. In mouse prostate tissue, ERG markedly increased androgen receptor (AR) binding. Robust ERG-mediated transcriptional changes, observed only in the setting of Pten loss, included the restoration of AR transcriptional output and upregulation of genes involved in cell death, migration, inflammation and angiogenesis. Similarly, ETS variant 1 (ETV1) positively regulated the AR cistrome and transcriptional output in ETV1-translocated, PTEN-deficient human prostate cancer cells. In two large clinical cohorts, expression of ERG and ETV1 correlated with higher AR transcriptional output in PTEN-deficient prostate cancer specimens. We propose that ETS factors cause prostate-specific transformation by altering the AR cistrome, priming the prostate epithelium to respond to aberrant upstream signals such as PTEN loss.


Cancer Discovery | 2013

Androgen Receptor Signaling Regulates DNA Repair in Prostate Cancers

William R. Polkinghorn; Joel S. Parker; Man X. Lee; Elizabeth M. Kass; Daniel E. Spratt; Phillip J. Iaquinta; Vivek K. Arora; Wei Feng Yen; Ling Cai; Deyou Zheng; Brett S. Carver; Yu Chen; Philip A. Watson; Neel Shah; Sho Fujisawa; Alexander G. Goglia; Anuradha Gopalan; Haley Hieronymus; John Wongvipat; Peter T. Scardino; Michael J. Zelefsky; Maria Jasin; Jayanta Chaudhuri; Simon N. Powell; Charles L. Sawyers

UNLABELLED We demonstrate that the androgen receptor (AR) regulates a transcriptional program of DNA repair genes that promotes prostate cancer radioresistance, providing a potential mechanism by which androgen deprivation therapy synergizes with ionizing radiation. Using a model of castration-resistant prostate cancer, we show that second-generation antiandrogen therapy results in downregulation of DNA repair genes. Next, we demonstrate that primary prostate cancers display a significant spectrum of AR transcriptional output, which correlates with expression of a set of DNA repair genes. Using RNA-seq and ChIP-seq, we define which of these DNA repair genes are both induced by androgen and represent direct AR targets. We establish that prostate cancer cells treated with ionizing radiation plus androgen demonstrate enhanced DNA repair and decreased DNA damage and furthermore that antiandrogen treatment causes increased DNA damage and decreased clonogenic survival. Finally, we demonstrate that antiandrogen treatment results in decreased classical nonhomologous end-joining. SIGNIFICANCE We demonstrate that the AR regulates a network of DNA repair genes, providing a potential mechanism by which androgen deprivation synergizes with radiotherapy for prostate cancer.

Collaboration


Dive into the Deyou Zheng's collaboration.

Top Co-Authors

Avatar

Mingyan Lin

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ping Wang

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Herbert M. Lachman

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Erika Pedrosa

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shira Rockowitz

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ales Cvekl

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Dejian Zhao

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Elaine Fuchs

Howard Hughes Medical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge