Erika R. Briggs
University of Pennsylvania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erika R. Briggs.
Genes & Development | 2012
Anne Bugge; Dan Feng; Logan J. Everett; Erika R. Briggs; Shannon E. Mullican; Fenfen Wang; Jennifer Jager; Mitchell A. Lazar
The nuclear receptor Rev-erbα regulates circadian rhythm and metabolism, but its effects are modest and it has been considered to be a secondary regulator of the cell-autonomous clock. Here we report that depletion of Rev-erbα together with closely related Rev-erbβ has dramatic effects on the cell-autonomous clock as well as hepatic lipid metabolism. Mouse embryonic fibroblasts were rendered arrhythmic by depletion of both Rev-erbs. In mouse livers, Rev-erbβ mRNA and protein levels oscillate with a diurnal pattern similar to that of Rev-erbα, and both Rev-erbs are recruited to a remarkably similar set of binding sites across the genome, enriched near metabolic genes. Depletion of both Rev-erbs in liver synergistically derepresses several metabolic genes as well as genes that control the positive limb of the molecular clock. Moreover, deficiency of both Rev-erbs causes marked hepatic steatosis, in contrast to relatively subtle changes upon loss of either subtype alone. These findings establish the two Rev-erbs as major regulators of both clock function and metabolism, displaying a level of subtype collaboration that is unusual among nuclear receptors but common among core clock proteins, protecting the organism from major perturbations in circadian and metabolic physiology.
Nature | 2013
Zachary Gerhart-Hines; Dan Feng; Matthew J. Emmett; Logan J. Everett; Emanuele Loro; Erika R. Briggs; Anne Bugge; Catherine Hou; Christine Ferrara; Patrick Seale; Daniel A. Pryma; Tejvir S. Khurana; Mitchell A. Lazar
Circadian oscillation of body temperature is a basic, evolutionarily conserved feature of mammalian biology. In addition, homeostatic pathways allow organisms to protect their core temperatures in response to cold exposure. However, the mechanism responsible for coordinating daily body temperature rhythm and adaptability to environmental challenges is unknown. Here we show that the nuclear receptor Rev-erbα (also known as Nr1d1), a powerful transcriptional repressor, links circadian and thermogenic networks through the regulation of brown adipose tissue (BAT) function. Mice exposed to cold fare considerably better at 05:00 (Zeitgeber time 22) when Rev-erbα is barely expressed than at 17:00 (Zeitgeber time 10) when Rev-erbα is abundant. Deletion of Rev-erbα markedly improves cold tolerance at 17:00, indicating that overcoming Rev-erbα-dependent repression is a fundamental feature of the thermogenic response to cold. Physiological induction of uncoupling protein 1 (Ucp1) by cold temperatures is preceded by rapid downregulation of Rev-erbα in BAT. Rev-erbα represses Ucp1 in a brown-adipose-cell-autonomous manner and BAT Ucp1 levels are high in Rev-erbα-null mice, even at thermoneutrality. Genetic loss of Rev-erbα also abolishes normal rhythms of body temperature and BAT activity. Thus, Rev-erbα acts as a thermogenic focal point required for establishing and maintaining body temperature rhythm in a manner that is adaptable to environmental demands.
Cell | 2014
Bin Fang; Logan J. Everett; Jennifer Jager; Erika R. Briggs; Sean M. Armour; Dan Feng; Ankur Roy; Zachary Gerhart-Hines; Zheng Sun; Mitchell A. Lazar
Mammalian transcriptomes display complex circadian rhythms with multiple phases of gene expression that cannot be accounted for by current models of the molecular clock. We have determined the underlying mechanisms by measuring nascent RNA transcription around the clock in mouse liver. Unbiased examination of enhancer RNAs (eRNAs) that cluster in specific circadian phases identified functional enhancers driven by distinct transcription factors (TFs). We further identify on a global scale the components of the TF cistromes that function to orchestrate circadian gene expression. Integrated genomic analyses also revealed mechanisms by which a single circadian factor controls opposing transcriptional phases. These findings shed light on the diversity and specificity of TF function in the generation of multiple phases of circadian gene transcription in a mammalian organ.
Cell | 2015
Raymond E. Soccio; Eric R. Chen; Satyajit R. Rajapurkar; Pegah Safabakhsh; Jill M. Marinis; Joanna R. DiSpirito; Matthew J. Emmett; Erika R. Briggs; Bin Fang; Logan J. Everett; Hee Woong Lim; Kyoung-Jae Won; David J. Steger; Ying Wu; Mete Civelek; Benjamin F. Voight; Mitchell A. Lazar
SNPs affecting disease risk often reside in non-coding genomic regions. Here, we show that SNPs are highly enriched at mouse strain-selective adipose tissue binding sites for PPARγ, a nuclear receptor for anti-diabetic drugs. Many such SNPs alter binding motifs for PPARγ or cooperating factors and functionally regulate nearby genes whose expression is strain selective and imbalanced in heterozygous F1 mice. Moreover, genetically determined binding of PPARγ accounts for mouse strain-specific transcriptional effects of TZD drugs, providing proof of concept for personalized medicine related to nuclear receptor genomic occupancy. In human fat, motif-altering SNPs cause differential PPARγ binding, provide a molecular mechanism for some expression quantitative trait loci, and are risk factors for dysmetabolic traits in genome-wide association studies. One PPARγ motif-altering SNP is associated with HDL levels and other metabolic syndrome parameters. Thus, natural genetic variation in PPARγ genomic occupancy determines individual disease risk and drug response.
Diabetes | 2011
Hyeong Kyu Park; Mohammed Qatanani; Erika R. Briggs; Rexford S. Ahima; Mitchell A. Lazar
OBJECTIVE Although adipocyte-derived murine resistin links insulin resistance to obesity, the role of human resistin, predominantly expressed in mononuclear cells and induced by inflammatory signals, remains unclear. Given the mounting evidence that obesity and type 2 diabetes are inflammatory diseases, we sought to determine the relationship between inflammatory increases in human resistin and insulin resistance. RESEARCH DESIGN AND METHODS To investigate the role of human resistin on glucose homeostasis in inflammatory states, we generated mice lacking murine resistin but transgenic for a bacterial artificial chromosome containing human resistin (BAC-Retn), whose expression was similar to that in humans. The metabolic and molecular phenotypes of BAC-Retn mice were assessed after acute and chronic endotoxemia (i.e., exposure to inflammatory lipopolysaccharide). RESULTS We found that BAC-Retn mice have circulating resistin levels within the normal human range, and similar to humans, lipopolysaccharide markedly increased serum resistin levels. Acute endotoxemia caused hypoglycemia in mice lacking murine resistin, and this was attenuated in BAC-Retn mice. In addition, BAC-Retn mice developed severe hepatic insulin resistance under chronic endotoxemia, accompanied by increased inflammatory responses in liver and skeletal muscle. CONCLUSIONS These results strongly support the role of human resistin in the development of insulin resistance in inflammation. Thus, human resistin may link insulin resistance to inflammatory diseases such as obesity, type 2 diabetes, and atherosclerosis.
Journal of Biological Chemistry | 2009
Michael Schupp; Ana G. Cristancho; Martina I. Lefterova; Elyisha A. Hanniman; Erika R. Briggs; David J. Steger; Mohammed Qatanani; Joshua C. Curtin; Jonathan Schug; Scott A. Ochsner; Neil J. McKenna; Mitchell A. Lazar
Nuclear peroxisome proliferator-activated receptor-γ (PPARγ) is required for adipocyte differentiation, but its role in mature adipocytes is less clear. Here, we report that knockdown of PPARγ expression in 3T3-L1 adipocytes returned the expression of most adipocyte genes to preadipocyte levels. Consistently, down-regulated but not up-regulated genes showed strong enrichment of PPARγ binding. Surprisingly, not all adipocyte genes were reversed, and the adipocyte morphology was maintained for an extended period after PPARγ depletion. To explain this, we focused on transcriptional regulators whose adipogenic regulation was not reversed upon PPARγ depletion. We identified GATA2, a transcription factor whose down-regulation early in adipogenesis is required for preadipocyte differentiation and whose levels remain low after PPARγ knockdown. Forced expression of GATA2 in mature adipocytes complemented PPARγ depletion and impaired adipocyte functionality with a more preadipocyte-like gene expression profile. Ectopic expression of GATA2 in adipose tissue in vivo had a similar effect on adipogenic gene expression. These results suggest that PPARγ-independent down-regulation of GATA2 prevents reversion of mature adipocytes after PPARγ depletion.
Nature | 2017
Matthew J. Emmett; Hee-Woong Lim; Jennifer Jager; Hannah J. Richter; Marine Adlanmerini; Lindsey C. Peed; Erika R. Briggs; David J. Steger; Tao Ma; Carrie A. Sims; Joseph A. Baur; Liming Pei; Kyoung-Jae Won; Patrick Seale; Zachary Gerhart-Hines; Mitchell A. Lazar
Brown adipose tissue is a thermogenic organ that dissipates chemical energy as heat to protect animals against hypothermia and to counteract metabolic disease. However, the transcriptional mechanisms that determine the thermogenic capacity of brown adipose tissue before environmental cold are unknown. Here we show that histone deacetylase 3 (HDAC3) is required to activate brown adipose tissue enhancers to ensure thermogenic aptitude. Mice with brown adipose tissue-specific genetic ablation of HDAC3 become severely hypothermic and succumb to acute cold exposure. Uncoupling protein 1 (UCP1) is nearly absent in brown adipose tissue lacking HDAC3, and there is also marked downregulation of mitochondrial oxidative phosphorylation genes resulting in diminished mitochondrial respiration. Remarkably, although HDAC3 acts canonically as a transcriptional corepressor, it functions as a coactivator of oestrogen-related receptor α (ERRα) in brown adipose tissue. HDAC3 coactivation of ERRα is mediated by deacetylation of PGC-1α and is required for the transcription of Ucp1, Ppargc1a (encoding PGC-1α), and oxidative phosphorylation genes. Importantly, HDAC3 promotes the basal transcription of these genes independently of adrenergic stimulation. Thus, HDAC3 uniquely primes Ucp1 and the thermogenic transcriptional program to maintain a critical capacity for thermogenesis in brown adipose tissue that can be rapidly engaged upon exposure to dangerously cold temperature.
Journal of Clinical Investigation | 2017
Raymond E. Soccio; Zhenghui Li; Eric R. Chen; Yee Hoon Foong; Kiara K. Benson; Joanna R. DiSpirito; Shannon E. Mullican; Matthew J. Emmett; Erika R. Briggs; Lindsey C. Peed; Richard K. Dzeng; Carlos J. Medina; Jennifer F. Jolivert; Megan Kissig; Satyajit R. Rajapurkar; Manashree Damle; Hee-Woong Lim; Kyoung-Jae Won; Patrick Seale; David J. Steger; Mitchell A. Lazar
Obesity causes insulin resistance, and PPAR&ggr; ligands such as rosiglitazone are insulin sensitizing, yet the mechanisms remain unclear. In C57BL/6 (B6) mice, obesity induced by a high-fat diet (HFD) has major effects on visceral epididymal adipose tissue (eWAT). Here, we report that HFD-induced obesity in B6 mice also altered the activity of gene regulatory elements and genome-wide occupancy of PPAR&ggr;. Rosiglitazone treatment restored insulin sensitivity in obese B6 mice, yet, surprisingly, had little effect on gene expression in eWAT. However, in subcutaneous inguinal fat (iWAT), rosiglitazone markedly induced molecular signatures of brown fat, including the key thermogenic gene Ucp1. Obesity-resistant 129S1/SvImJ mice (129 mice) displayed iWAT browning, even in the absence of rosiglitazone. The 129 Ucp1 locus had increased PPAR&ggr; binding and gene expression that were preserved in the iWAT of B6x129 F1–intercrossed mice, with an imbalance favoring the 129-derived alleles, demonstrating a cis-acting genetic difference. Thus, B6 mice have genetically defective Ucp1 expression in iWAT. However, when Ucp1 was activated by rosiglitazone, or by iWAT browning in cold-exposed or young mice, expression of the B6 version of Ucp1 was no longer defective relative to the 129 version, indicating epigenomic rescue. These results provide a framework for understanding how environmental influences like drugs can affect the epigenome and potentially rescue genetically determined disease phenotypes.
Cell Metabolism | 2016
Romeo Papazyan; Zheng Sun; Yong Hoon Kim; Paul M. Titchenell; David A. Hill; Wenyun Lu; Manashree Damle; Min Wan; Yuxiang Zhang; Erika R. Briggs; Joshua D. Rabinowitz; Mitchell A. Lazar
Liver fat accumulation precedes non-alcoholic steatohepatitis, an increasing cause of end-stage liver disease. Histone deacetylase 3 (HDAC3) is required for hepatic triglyceride homeostasis, and sterol regulatory element binding protein (SREBP) regulates the lipogenic response to feeding, but the crosstalk between these pathways is unknown. Here we show that inactivation of SREBP by hepatic deletion of SREBP cleavage activating protein (SCAP) abrogates the increase in lipogenesis caused by loss of HDAC3, but fatty acid oxidation remains defective. This combination leads to accumulation of lipid intermediates and to an energy drain that collectively cause oxidative stress, inflammation, liver damage, and, ultimately, synthetic lethality. Remarkably, this phenotype is prevented by ectopic expression of nuclear SREBP1c, revealing a surprising benefit of de novo lipogenesis and triglyceride synthesis in preventing lipotoxicity. These results demonstrate that HDAC3 and SCAP control symbiotic pathways of liver lipid metabolism that are critical for suppression of lipotoxicity.
Endocrinology | 2013
Daniel R. Schwartz; Erika R. Briggs; Mohammed Qatanani; Heloisa Sawaya; Igal A. Sebag; Michael H. Picard; Marielle Scherrer-Crosbie; Mitchell A. Lazar
Resistin is a circulating mediator of insulin resistance mainly expressed in human monocytes and responsive to inflammatory stimuli. Recent clinical studies have connected elevated resistin levels with the development and severity of heart failure. To further our understanding of the role of human resistin in heart failure, we studied a humanized mouse model lacking murine resistin but transgenic for the human Retn gene (Hum-Retn mice), which exhibits basal and inflammation-stimulated resistin levels similar to humans. Specifically, we explored whether resistin underlies acute anthracycline-induced cardiotoxicity. Remarkably, doxorubicin (25mg/kg ip) led to a 4-fold induction of serum resistin levels in Hum-Retn mice. Moreover, doxorubicin-induced cardiotoxicity was greater in the Hum-Retn mice than in littermate controls not expressing human resistin (Retn(-/-)). Hum-Retn mice showed increased cardiac mRNA levels of inflammatory and cell adhesion genes compared with Retn(-/-) mice. Macrophages, but not cardiomyocytes, from Hum-Retn mice treated with doxorubicin in vitro showed dramatic induction of hRetn (human resistin) mRNA and protein expression. We also examined resistin levels in anthracycline-treated breast cancer patients with and without cardiotoxicity. Intriguingly, serum resistin levels in women undergoing anthracycline-containing chemotherapy increased significantly at 3 months and remained elevated at 6 months in those with subsequent cardiotoxicity. Further, elevation in resistin correlated with decline in ejection fraction in these women. These results suggest that elevated resistin is a biomarker of anthracycline-induced cardiotoxicity and may contribute in the development of heart failure via its direct effects on macrophages. These results further implicate resistin as a link between inflammation, metabolism, and heart disease.