Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Logan J. Everett is active.

Publication


Featured researches published by Logan J. Everett.


Genes & Development | 2012

Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function

Anne Bugge; Dan Feng; Logan J. Everett; Erika R. Briggs; Shannon E. Mullican; Fenfen Wang; Jennifer Jager; Mitchell A. Lazar

The nuclear receptor Rev-erbα regulates circadian rhythm and metabolism, but its effects are modest and it has been considered to be a secondary regulator of the cell-autonomous clock. Here we report that depletion of Rev-erbα together with closely related Rev-erbβ has dramatic effects on the cell-autonomous clock as well as hepatic lipid metabolism. Mouse embryonic fibroblasts were rendered arrhythmic by depletion of both Rev-erbs. In mouse livers, Rev-erbβ mRNA and protein levels oscillate with a diurnal pattern similar to that of Rev-erbα, and both Rev-erbs are recruited to a remarkably similar set of binding sites across the genome, enriched near metabolic genes. Depletion of both Rev-erbs in liver synergistically derepresses several metabolic genes as well as genes that control the positive limb of the molecular clock. Moreover, deficiency of both Rev-erbs causes marked hepatic steatosis, in contrast to relatively subtle changes upon loss of either subtype alone. These findings establish the two Rev-erbs as major regulators of both clock function and metabolism, displaying a level of subtype collaboration that is unusual among nuclear receptors but common among core clock proteins, protecting the organism from major perturbations in circadian and metabolic physiology.


Journal of Clinical Investigation | 2013

Epigenomic plasticity enables human pancreatic α to β cell reprogramming

Nuria C. Bramswig; Logan J. Everett; Jonathan Schug; Craig Dorrell; Chengyang Liu; Yanping Luo; Philip R. Streeter; Ali Naji; Markus Grompe; Klaus H. Kaestner

Insulin-secreting β cells and glucagon-secreting α cells maintain physiological blood glucose levels, and their malfunction drives diabetes development. Using ChIP sequencing and RNA sequencing analysis, we determined the epigenetic and transcriptional landscape of human pancreatic α, β, and exocrine cells. We found that, compared with exocrine and β cells, differentiated α cells exhibited many more genes bivalently marked by the activating H3K4me3 and repressing H3K27me3 histone modifications. This was particularly true for β cell signature genes involved in transcriptional regulation. Remarkably, thousands of these genes were in a monovalent state in β cells, carrying only the activating or repressing mark. Our epigenomic findings suggested that α to β cell reprogramming could be promoted by manipulating the histone methylation signature of human pancreatic islets. Indeed, we show that treatment of cultured pancreatic islets with a histone methyltransferase inhibitor leads to colocalization of both glucagon and insulin and glucagon and insulin promoter factor 1 (PDX1) in human islets and colocalization of both glucagon and insulin in mouse islets. Thus, mammalian pancreatic islet cells display cell-type-specific epigenomic plasticity, suggesting that epigenomic manipulation could provide a path to cell reprogramming and novel cell replacement-based therapies for diabetes.


Cell Stem Cell | 2013

Dynamic chromatin remodeling mediated by polycomb proteins orchestrates pancreatic differentiation of human embryonic stem cells.

Ruiyu Xie; Logan J. Everett; Hee-Woong Lim; Nisha A. Patel; Jonathan Schug; Evert Kroon; Olivia Kelly; Allen Wang; Kevin A. D’Amour; Allan J. Robins; Kyoung-Jae Won; Klaus H. Kaestner; Maike Sander

Embryonic development is characterized by dynamic changes in gene expression, yet the role of chromatin remodeling in these cellular transitions remains elusive. To address this question, we profiled the transcriptome and select chromatin modifications at defined stages during pancreatic endocrine differentiation of human embryonic stem cells. We identify removal of Polycomb group (PcG)-mediated repression on stage-specific genes as a key mechanism for the induction of developmental regulators. Furthermore, we discover that silencing of transitory genes during lineage progression associates with reinstatement of PcG-dependent repression. Significantly, in vivo- but not in vitro-differentiated endocrine cells exhibit close similarity to primary human islets in regard to transcriptome and chromatin structure. We further demonstrate that endocrine cells produced in vitro do not fully eliminate PcG-mediated repression on endocrine-specific genes, probably contributing to their malfunction. These studies reveal dynamic chromatin remodeling during developmental lineage progression and identify possible strategies for improving cell differentiation in culture.


Genes & Development | 2011

Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation.

Shannon E. Mullican; Christine A. Gaddis; Theresa Alenghat; Meera G. Nair; Paul Giacomin; Logan J. Everett; Dan Feng; David J. Steger; Jonathan Schug; David Artis; Mitchell A. Lazar

Macrophages, a key cellular component of inflammation, become functionally polarized in a signal- and context-specific manner. Th2 cytokines such as interleukin 4 (IL-4) polarize macrophages to a state of alternative activation that limits inflammation and promotes wound healing. Alternative activation is mediated by a transcriptional program that is influenced by epigenomic modifications, including histone acetylation. Here we report that macrophages lacking histone deacetylase 3 (HDAC3) display a polarization phenotype similar to IL-4-induced alternative activation and, furthermore, are hyperresponsive to IL-4 stimulation. Throughout the macrophage genome, HDAC3 deacetylates histone tails at regulatory regions, leading to repression of many IL-4-regulated genes characteristic of alternative activation. Following exposure to Schistosoma mansoni eggs, a model of Th2 cytokine-mediated disease that is limited by alternative activation, pulmonary inflammation was ameliorated in mice lacking HDAC3 in macrophages. Thus, HDAC3 functions in alternative activation as a brake whose release could be of benefit in the treatment of multiple inflammatory diseases.


Nature | 2013

The nuclear receptor Rev-erbα controls circadian thermogenic plasticity

Zachary Gerhart-Hines; Dan Feng; Matthew J. Emmett; Logan J. Everett; Emanuele Loro; Erika R. Briggs; Anne Bugge; Catherine Hou; Christine Ferrara; Patrick Seale; Daniel A. Pryma; Tejvir S. Khurana; Mitchell A. Lazar

Circadian oscillation of body temperature is a basic, evolutionarily conserved feature of mammalian biology. In addition, homeostatic pathways allow organisms to protect their core temperatures in response to cold exposure. However, the mechanism responsible for coordinating daily body temperature rhythm and adaptability to environmental challenges is unknown. Here we show that the nuclear receptor Rev-erbα (also known as Nr1d1), a powerful transcriptional repressor, links circadian and thermogenic networks through the regulation of brown adipose tissue (BAT) function. Mice exposed to cold fare considerably better at 05:00 (Zeitgeber time 22) when Rev-erbα is barely expressed than at 17:00 (Zeitgeber time 10) when Rev-erbα is abundant. Deletion of Rev-erbα markedly improves cold tolerance at 17:00, indicating that overcoming Rev-erbα-dependent repression is a fundamental feature of the thermogenic response to cold. Physiological induction of uncoupling protein 1 (Ucp1) by cold temperatures is preceded by rapid downregulation of Rev-erbα in BAT. Rev-erbα represses Ucp1 in a brown-adipose-cell-autonomous manner and BAT Ucp1 levels are high in Rev-erbα-null mice, even at thermoneutrality. Genetic loss of Rev-erbα also abolishes normal rhythms of body temperature and BAT activity. Thus, Rev-erbα acts as a thermogenic focal point required for establishing and maintaining body temperature rhythm in a manner that is adaptable to environmental demands.


Molecular Cell | 2013

Deacetylase-Independent Function of HDAC3 in Transcription and Metabolism Requires Nuclear Receptor Corepressor

Zheng Sun; Dan Feng; Bin Fang; Shannon E. Mullican; Seo-Hee You; Hee-Woong Lim; Logan J. Everett; Christopher S. Nabel; Yun Li; Vignesh Selvakumaran; Kyoung-Jae Won; Mitchell A. Lazar

Histone deacetylases (HDACs) are believed to regulate gene transcription by catalyzing deacetylation reactions. HDAC3 depletion in mouse liver upregulates lipogenic genes and results in severe hepatosteatosis. Here we show that pharmacologic HDAC inhibition in primary hepatocytes causes histone hyperacetylation but does not upregulate expression of HDAC3 target genes. Meanwhile, deacetylase-dead HDAC3 mutants can rescue hepatosteatosis and repress lipogenic genes expression in HDAC3-depleted mouse liver, demonstrating that histone acetylation is insufficient to activate gene transcription. Mutations abolishing interactions with the nuclear receptor corepressor (NCOR or SMRT) render HDAC3 nonfunctional in vivo. Additionally, liver-specific knockout of NCOR, but not SMRT, causes metabolic and transcriptomal alterations resembling those of mice without hepatic HDAC3, demonstrating that interaction with NCOR is essential for deacetylase-independent function of HDAC3. These findings highlight nonenzymatic roles of a major HDAC in transcriptional regulation in vivo and warrant reconsideration of the mechanism of action of HDAC inhibitors.


Cell | 2014

Circadian Enhancers Coordinate Multiple Phases of Rhythmic Gene Transcription In Vivo

Bin Fang; Logan J. Everett; Jennifer Jager; Erika R. Briggs; Sean M. Armour; Dan Feng; Ankur Roy; Zachary Gerhart-Hines; Zheng Sun; Mitchell A. Lazar

Mammalian transcriptomes display complex circadian rhythms with multiple phases of gene expression that cannot be accounted for by current models of the molecular clock. We have determined the underlying mechanisms by measuring nascent RNA transcription around the clock in mouse liver. Unbiased examination of enhancer RNAs (eRNAs) that cluster in specific circadian phases identified functional enhancers driven by distinct transcription factors (TFs). We further identify on a global scale the components of the TF cistromes that function to orchestrate circadian gene expression. Integrated genomic analyses also revealed mechanisms by which a single circadian factor controls opposing transcriptional phases. These findings shed light on the diversity and specificity of TF function in the generation of multiple phases of circadian gene transcription in a mammalian organ.


Journal of Biological Chemistry | 2011

Diet-induced Lethality Due to Deletion of the Hdac3 Gene in Heart and Skeletal Muscle

Zheng Sun; Nikhil Singh; Shannon E. Mullican; Logan J. Everett; Li Li; Lijun Yuan; Xi Liu; Jonathan A. Epstein; Mitchell A. Lazar

Many human diseases result from the influence of the nutritional environment on gene expression. The environment interacts with the genome by altering the epigenome, including covalent modification of nucleosomal histones. Here, we report a novel and dramatic influence of diet on the phenotype and survival of mice in which histone deacetylase 3 (Hdac3) is deleted postnatally in heart and skeletal muscle. Although embryonic deletion of myocardial Hdac3 causes major cardiomyopathy that reduces survival, we found that excision of Hdac3 in heart and muscle later in development leads to a much milder phenotype and does not reduce survival when mice are fed normal chow. Remarkably, upon switching to a high fat diet, the mice begin to die within weeks and display signs of severe hypertrophic cardiomyopathy and heart failure. Down-regulation of myocardial mitochondrial bioenergetic genes, specifically those involved in lipid metabolism, precedes the full development of cardiomyopathy, suggesting that HDAC3 is important in maintaining proper mitochondrial function. These data suggest that loss of the epigenomic modifier HDAC3 causes dietary lethality by compromising the ability of cardiac mitochondria to respond to changes of nutritional environment. In addition, this study provides a mouse model for diet-inducible heart failure.


Cell | 2015

Genetic Variation Determines PPARγ Function and Anti-diabetic Drug Response In Vivo.

Raymond E. Soccio; Eric R. Chen; Satyajit R. Rajapurkar; Pegah Safabakhsh; Jill M. Marinis; Joanna R. DiSpirito; Matthew J. Emmett; Erika R. Briggs; Bin Fang; Logan J. Everett; Hee Woong Lim; Kyoung-Jae Won; David J. Steger; Ying Wu; Mete Civelek; Benjamin F. Voight; Mitchell A. Lazar

SNPs affecting disease risk often reside in non-coding genomic regions. Here, we show that SNPs are highly enriched at mouse strain-selective adipose tissue binding sites for PPARγ, a nuclear receptor for anti-diabetic drugs. Many such SNPs alter binding motifs for PPARγ or cooperating factors and functionally regulate nearby genes whose expression is strain selective and imbalanced in heterozygous F1 mice. Moreover, genetically determined binding of PPARγ accounts for mouse strain-specific transcriptional effects of TZD drugs, providing proof of concept for personalized medicine related to nuclear receptor genomic occupancy. In human fat, motif-altering SNPs cause differential PPARγ binding, provide a molecular mechanism for some expression quantitative trait loci, and are risk factors for dysmetabolic traits in genome-wide association studies. One PPARγ motif-altering SNP is associated with HDL levels and other metabolic syndrome parameters. Thus, natural genetic variation in PPARγ genomic occupancy determines individual disease risk and drug response.


Molecular Endocrinology | 2011

Species-specific strategies underlying conserved functions of metabolic transcription factors

Raymond E. Soccio; Geetu Tuteja; Logan J. Everett; Zhaoyu Li; Mitchell A. Lazar; Klaus H. Kaestner

The winged helix protein FOXA2 and the nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) are highly conserved, regionally expressed transcription factors (TFs) that regulate networks of genes controlling complex metabolic functions. Cistrome analysis for Foxa2 in mouse liver and PPARγ in mouse adipocytes has previously produced consensus-binding sites that are nearly identical to those used by the corresponding TFs in human cells. We report here that, despite the conservation of the canonical binding motif, the great majority of binding regions for FOXA2 in human liver and for PPARγ in human adipocytes are not in the orthologous locations corresponding to the mouse genome, and vice versa. Of note, TF binding can be absent in one species despite sequence conservation, including motifs that do support binding in the other species, demonstrating a major limitation of in silico binding site prediction. Whereas only approximately 10% of binding sites are conserved, gene-centric analysis reveals that about 50% of genes with nearby TF occupancy are shared across species for both hepatic FOXA2 and adipocyte PPARγ. Remarkably, for both TFs, many of the shared genes function in tissue-specific metabolic pathways, whereas species-unique genes fail to show enrichment for these pathways. Nonetheless, the species-unique genes, like the shared genes, showed the expected transcriptional regulation by the TFs in loss-of-function experiments. Thus, species-specific strategies underlie the biological functions of metabolic TFs that are highly conserved across mammalian species. Analysis of factor binding in multiple species may be necessary to distinguish apparent species-unique noise and reveal functionally relevant information.

Collaboration


Dive into the Logan J. Everett's collaboration.

Top Co-Authors

Avatar

Mitchell A. Lazar

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Dan Feng

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Klaus H. Kaestner

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Erika R. Briggs

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zheng Sun

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Anne Bugge

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Bin Fang

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

David J. Steger

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jasna Maksimoska

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge