Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erika S. Piedras-Rentería is active.

Publication


Featured researches published by Erika S. Piedras-Rentería.


Neuron | 2000

Rapid Reuse of Readily Releasable Pool Vesicles at Hippocampal Synapses

Jason L. Pyle; Ege T. Kavalali; Erika S. Piedras-Rentería; Richard W. Tsien

Functional presynaptic vesicles have been subdivided into readily releasable (RRP) and reserve (RP) pools. We studied recycling properties of RRP vesicles through differential retention of FM1-43 and FM2-10 and by varying the time window for FM dye uptake. Both approaches indicated that vesicles residing in the RRP underwent rapid endocytosis (tau approximately 1s), whereas newly recruited RP vesicles were recycled slowly (tau approximately 30 s). With repeated challenges (hypertonic or electrical stimuli), the ability to release neurotransmitter recovered 10-fold more rapidly than restoration of FM2-10 destaining. Finding neurotransmission in the absence of destaining implied that rapidly endocytosed RRP vesicles were capable of reuse, a process distinct from repopulation from the RP. Reuse would greatly expand the functional capabilities of a limited number of vesicles in CNS terminals, particularly during intermittent bursts of activity.


Neuron | 2002

α- and βCaMKII: Inverse Regulation by Neuronal Activity and Opposing Effects on Synaptic Strength

Tara C. Thiagarajan; Erika S. Piedras-Rentería; Richard W. Tsien

Abstract We show that α and βCaMKII are inversely regulated by activity in hippocampal neurons in culture: the α/β ratio shifts toward α during increased activity and β during decreased activity. The swing in ratio is ∼5-fold and may help tune the CaMKII holoenzyme to changing intensities of Ca 2+ signaling. The regulation of CaMKII levels uses distinguishable pathways, one responsive to NMDA receptor blockade that controls αCaMKII alone, the other responsive to AMPA receptor blockade and involving βCaMKII and possibly further downstream effects of βCaMKII on αCaMKII. Overexpression of αCaMKII or βCaMKII resulted in opposing effects on unitary synaptic strength as well as mEPSC frequency that could account in part for activity-dependent effects observed with chronic blockade of AMPA receptors. Regulation of CaMKII subunit composition may be important for both activity-dependent synaptic homeostasis and plasticity.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Altered properties of quantal neurotransmitter release at endplates of mice lacking P/Q-type Ca2+ channels

Francisco J. Urbano; Erika S. Piedras-Rentería; Kisun Jun; Hee-Sup Shin; Osvaldo D. Uchitel; Richard W. Tsien

Transmission at the mouse neuromuscular junction normally relies on P/Q-type channels, but became jointly dependent on both N- and R-type Ca2+ channels when the P/Q-type channel α1A subunit was deleted. R-type channels lay close to Ca2+ sensors for exocytosis and IK(Ca) channel activation, like the P/Q-type channels they replaced. In contrast, N-type channels were less well localized, but abundant enough to influence secretion strongly, particularly when action potentials were prolonged. Our data suggested that active zone structures may select among multiple Ca2+ channels in the hierarchy P/Q>R>N. The α1A−/− neuromuscular junction displayed several other differences from wild-type: lowered quantal content but greater ability to withstand reductions in the Ca2+/Mg2+ ratio, and little or no paired-pulse facilitation, the latter findings possibly reflecting compensatory mechanisms at individual release sites. Changes in presynaptic function were also associated with a significant reduction in the size of postsynaptic acetylcholine receptor clusters.


Journal of Neurochemistry | 2011

Forced-exercise delays neuropathic pain in experimental diabetes: effects on voltage-activated calcium channels.

Sahadev A. Shankarappa; Erika S. Piedras-Rentería; Evan B. Stubbs

J. Neurochem. (2011) 118, 224–236.


American Journal of Physiology-cell Physiology | 2010

T-type current modulation by the actin-binding protein Kelch-like 1

Kelly A. Aromolaran; Kelly A. Benzow; Leanne L. Cribbs; Michael D. Koob; Erika S. Piedras-Rentería

We report a novel form of modulation of T-type calcium currents carried out by the neuronal actin-binding protein (ABP) Kelch-like 1 (KLHL1). KLHL1 is a constitutive neuronal ABP localized to the soma and dendritic arbors; its genetic elimination in Purkinje neurons leads to dendritic atrophy and motor insufficiency. KLHL1 participates in neurite outgrowth and upregulates voltage-gated P/Q-type calcium channel function; here we investigated KLHL1s role as a modulator of low-voltage-gated calcium channels and determined the molecular mechanism of this modulation with electrophysiology and biochemistry. Coexpression of KLHL1 with Ca(V)3.1 or Ca(V)3.2 (alpha(1G) or alpha(1H) subunits) caused increases in T-type current density (35%) and calcium influx (75-83%) when carried out by alpha(1H) but not by alpha(1G). The association between KLHL1 and alpha(1H) was determined by immunoprecipitation and immunolocalization in brain membrane fractions and in vitro in HEK-293 cells. Noise analysis showed that neither alpha(1H) single-channel conductance nor open probability was altered by KLHL1, yet a significant increase in channel number was detected and further corroborated by Western blot analysis. KLHL1 also induced an increase in alpha(1H) current deactivation time (tau(deactivation)). Interestingly, the majority of KLHL1s effects were eliminated when the actin-binding motif (kelch) was removed, with the exception of the calcium influx increase during action potentials, indicating that KLHL1 interacts with alpha(1H) and actin and selectively regulates alpha(1H) function by increasing the number of alpha(1H) channels. This constitutes a novel regulatory mechanism of T-type calcium currents and supports the role of KLHL1 in the modulation of cellular excitability.


Neuroscience | 2007

The Kelch-like protein 1 modulates P/Q-type calcium current density.

Kelly A. Aromolaran; Kelly A. Benzow; Michael D. Koob; Erika S. Piedras-Rentería

The actin-binding protein Kelch-like 1 (KLHL1) is a neuronal protein that belongs to the evolutionarily-conserved Kelch protein super-family. The mammalian KLHL1 is brain-specific, cytosolic and can form multimers and bind actin filaments. KLHL1s function is likely that of an actin-organizing protein, possibly modulating neurite outgrowth, the dynamic morphology of dendritic spine heads; or anchoring proteins essential for post-synaptic function, like ion channels. Targeted deletion of the KLHL1 gene in Purkinje neurons results in dendritic deficits in these neurons, abnormal gait, and progressive loss of motor coordination in mice [He Y, Zu T, Benzow KA, Orr HT, Clark HB, Koob MD (2006) Targeted deletion of a single SCA8 ataxia locus allele in mice causes abnormal gait, progressive loss of motor coordination, and Purkinje cell dendritic deficits. J Neurosci 26:9975-9982]. Here we tested the hypothesis that KLHL1 may interact and modulate voltage-gated calcium channels by assessing the interaction of the principal subunit of P/Q-type channels, alpha(1A), with KLHL1. Experiments in human embryonic kidney line HEK 293 (HEK) cells and cerebellar primary cultures revealed co-incidence of alpha(1A) and KLHL1 immunoreactivity when testing both the endogenous or epitope-tagged versions of the proteins. Similarly, co-immunoprecipitation experiments in HEK cells and brain tissue exposed the presence of KLHL1 in protein samples immunoprecipitated with FLAG-tagged or alpha(1A) antibodies. Functional studies of KLHL1 on P/Q-type current properties probed with whole-cell patch clamp revealed a significant increase in mean current density in the presence of KLHL1 (80% increase; from -13.2+/-2.0 pA/pF to -23.7+/-4.2 pA/pF, P<0.02), as well as a shift in steady state activation V(50) of -5.5 mV (from 12.8+/-1.8 mV to 7.3+/-1.0 mV, P<0.02). Our data are consistent with a modulatory effect of KLHL1 on the P/Q-type calcium channel function and suggest a possible novel role for KLHL1 in cellular excitability.


Channels | 2009

Kelch-like 1 protein upregulates T-type currents by an actin-F dependent increase in α(1H) channels via the recycling endosome.

Kelly A. Aromolaran; Kelly A. Benzow; Leanne L. Cribbs; Michael D. Koob; Erika S. Piedras-Rentería

The neuronal protein Kelch-like 1 (KLHL1) is a novel actin-binding protein that modulates neuronal structure and function. KLHL1 knockout mice exhibit dendritic atrophy in cerebellar Purkinje neurons and motor dysfunction. Interestingly, KLHL1 up-regulates high and low voltage-gated calcium currents (CaV2.1 and CaV3.2) and interacts with their respective principal subunits, α1A and α1H. We reported the mechanism of enhanced CaV3.2 (α1H) current density (and calcium influx) by KLHL1 is due to an increase in channel number (N) that requires the binding of actin. In this report we further elucidate the role of the actin cytoskeleton in this process using pharmacological tools to disrupt or stabilize actin filaments and to prevent protein trafficking and vesicle recycling. Disruption of the cytoskeleton did not affect the basal activity of α1H, but did eliminate its modulation by KLHL1. In contrast, actin-F stabilization on its own increased basal α1H activity similar to KLHL1 but without synergy in its presence, suggesting KLHL1 requires actin-polymerization to increase α1H currents. Noise analysis revealed that actin polymerization induced an increase in N and Po, in contrast to increased N in the presence of KLHL1. Interestingly, pharmacological or genetic disruption of endosomal recycling eliminated the increase in channel number by KLHL1 demonstrating this effect occurs via enhanced α1H re-insertion through the recycling endosome. Our findings afford insight on a novel mechanism of T-type channel modulation that could have overall functional implications for T-type channel function in the brain.


Journal of Molecular and Cellular Cardiology | 2008

Ca2+ sparks and cellular distribution of ryanodine receptors in developing cardiomyocytes from rat

Rose M. Snopko; Josefina Ramos-Franco; Alessandro Di Maio; Kimberly L. Karko; Christopher Manley; Erika S. Piedras-Rentería; Rafael Mejía-Alvarez

Although abundant ryanodine receptors (RyRs) exist in cardiomyocytes from newborn (NB) rat and despite the maturity of their single-channel properties, the RyR contribution to excitation-contraction (E-C) coupling is minimal. Immature arrangement of RyRs in the Ca(2+) release site of the sarcoplasmic reticulum and/or distant RyRs location from the sarcolemmal Ca(2+) signal could explain this quiescence. Consequently, Ca(2+) sparks and their cellular distribution were studied in NB myocytes and correlated with the formation of dyads and transverse (T) tubules. Ca(2+) sparks were recorded in fluo-4-loaded intact ventricular myocytes acutely dissociated from adult and NB rats (0-9 days old). Sparks were defined/compared in the center and periphery of the cell. Co-immunolocalization of RyRs with dihydropyridine receptors (DHPR) was used to estimate dyad formation, while the development of T tubules was studied using di-8-ANEPPS and diIC12. Our results indicate that in NB cells, Ca(2+) sparks exhibited lower amplitude (1.7+/-0.5 vs. 3.6+/-1.7 F/F(0)), shorter duration (47+/-3.2 vs. 54.1+/-3 ms), and larger width (1.7+/-0.8 vs. 1.2+/-0.4 microm) than in adult. Although no significant changes were observed in the overall frequency, central sparks increased from approximately 60% at 0-1 day to 82% at 7-9 days. While immunolocalization revealed many central release sites at 7-8 days, fluorescence labeling of the plasma membrane showed less abundant internal T tubules. This could imply that although during the first week, release sites emerge forming dyads with DHPR-containing T tubules; some of these T tubules may not be connected to the surface, explaining the RyR quiescence during E-C coupling in NB.


Cell Calcium | 2012

Insulin-mediated upregulation of T-type Ca2+ currents in GH3 cells is mediated by increased endosomal recycling and incorporation of surface membrane Cav3.1 channels.

Alicia Toledo; Alejandro Sandoval; Ricardo González-Ramírez; Traudy Ávila; Angélica Almanza; Eduardo Monjaraz; Juan Carlos Gomora; Erika S. Piedras-Rentería; Ricardo Felix

Growth factors and hormones have both short- and long-term regulatory effects on the functional expression of voltage gated Ca2+ (CaV) channels. In particular, it has been reported that chronic treatment with insulin upregulates T-type channel membrane expression, leading to an increase in current density in clonal pituitary GH3 cells. Though this regulatory action may result from alterations in gene expression, recent studies have demonstrated also that endosomal trafficking provides a mechanism for dynamic changes in CaV channel membrane density. Therefore, in the present work we sought to determine whether the actions of insulin on T-type channel functional expression are mediated by transcriptional and/or post-transcriptional mechanisms. Using real-time RT-PCR and semi-quantitative western blot we found no changes after treatment in the transcript and protein levels of Cav3.1, the T-type channel isoform preferentially expressed in the GH3 cells. Consistent with this, transcriptional studies using a luciferase reporter assay suggested that insulin treatment does not affect the Cav3.1 promoter activity. In contrast, patch-clamp recordings on HEK-293 cells stably expressing Cav3.1 channels showed a significant increase in current density after treatment, suggesting that the effects of insulin may require post-transcriptional regulation. In line with this, disruption of the endosomal recycling pathway using Brefeldin A and a dominant negative mutant of the small GTPase Rab11a prevented the stimulatory effects of insulin on Cav3.1 channels in HEK-293 cells. These results may help explain the effects of insulin on T-type channels and contribute to our understanding of how endosomal recycling impacts the functional expression of CaV channels.


Cell Calcium | 2014

Down-regulation of endogenous KLHL1 decreases voltage-gated calcium current density

Paula P. Perissinotti; Elizabeth G. Ethington; Leanne L. Cribbs; Michael D. Koob; Jody L. Martin; Erika S. Piedras-Rentería

The actin-binding protein Kelch-like 1 (KLHL1) can modulate voltage-gated calcium channels in vitro. KLHL1 interacts with actin and with the pore-forming subunits of Cav2.1 and CaV3.2 calcium channels, resulting in up-regulation of P/Q and T-type current density. Here we tested whether endogenous KLHL1 modulates voltage gated calcium currents in cultured hippocampal neurons by down-regulating the expression of KLHL1 via adenoviral delivery of shRNA targeted against KLHL1 (shKLHL1). Control adenoviruses did not affect any of the neuronal properties measured, yet down-regulation of KLHL1 resulted in HVA current densities ~68% smaller and LVA current densities 44% smaller than uninfected controls, with a concomitant reduction in α(1A) and α(1H) protein levels. Biophysical analysis and western blot experiments suggest Ca(V)3.1 and 3.3 currents are also present in shKLHL1-infected neurons. Synapsin I levels, miniature postsynaptic current frequency, and excitatory and inhibitory synapse number were reduced in KLHL1 knockdown. This study corroborates the physiological role of KLHL1 as a calcium channel modulator and demonstrates a novel, presynaptic role.

Collaboration


Dive into the Erika S. Piedras-Rentería's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu-Qing Cao

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dwight E. Bergles

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ege T. Kavalali

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge