Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eriko Koshimizu is active.

Publication


Featured researches published by Eriko Koshimizu.


Journal of Clinical Investigation | 2007

The muscle-specific ubiquitin ligase atrogin-1/MAFbx mediates statin-induced muscle toxicity

Jun-ichi Hanai; Peirang Cao; Preeti Tanksale; Shintaro Imamura; Eriko Koshimizu; Jinghui Zhao; Shuji Kishi; Michiaki Yamashita; Paul S. Phillips; Vikas P. Sukhatme; Stewart H. Lecker

Statins inhibit HMG-CoA reductase, a key enzyme in cholesterol synthesis, and are widely used to treat hypercholesterolemia. These drugs can lead to a number of side effects in muscle, including muscle fiber breakdown; however, the mechanisms of muscle injury by statins are poorly understood. We report that lovastatin induced the expression of atrogin-1, a key gene involved in skeletal muscle atrophy, in humans with statin myopathy, in zebrafish embryos, and in vitro in murine skeletal muscle cells. In cultured mouse myotubes, atrogin-1 induction following lovastatin treatment was accompanied by distinct morphological changes, largely absent in atrogin-1 null cells. In zebrafish embryos, lovastatin promoted muscle fiber damage, an effect that was closely mimicked by knockdown of zebrafish HMG-CoA reductase. Moreover, atrogin-1 knockdown in zebrafish embryos prevented lovastatin-induced muscle injury. Finally, overexpression of PGC-1alpha, a transcriptional coactivator that induces mitochondrial biogenesis and protects against the development of muscle atrophy, dramatically prevented lovastatin-induced muscle damage and abrogated atrogin-1 induction both in fish and in cultured mouse myotubes. Collectively, our human, animal, and in vitro findings shed light on the molecular mechanism of statin-induced myopathy and suggest that atrogin-1 may be a critical mediator of the muscle damage induced by statins.


American Journal of Human Genetics | 2013

Mutations in KLHL40 Are a Frequent Cause of Severe Autosomal-Recessive Nemaline Myopathy

Gianina Ravenscroft; Satoko Miyatake; Vilma-Lotta Lehtokari; Emily J. Todd; Pauliina Vornanen; Kyle S. Yau; Yukiko K. Hayashi; Noriko Miyake; Yoshinori Tsurusaki; Hiroshi Doi; Hirotomo Saitsu; Hitoshi Osaka; Sumimasa Yamashita; Takashi Ohya; Yuko Sakamoto; Eriko Koshimizu; Shintaro Imamura; Michiaki Yamashita; Kazuhiro Ogata; Masaaki Shiina; Robert J. Bryson-Richardson; Raquel Vaz; Ozge Ceyhan; Catherine A. Brownstein; Lindsay C. Swanson; Sophie Monnot; Norma B. Romero; Helge Amthor; Nina Kresoje; Padma Sivadorai

Nemaline myopathy (NEM) is a common congenital myopathy. At the very severe end of the NEM clinical spectrum are genetically unresolved cases of autosomal-recessive fetal akinesia sequence. We studied a multinational cohort of 143 severe-NEM-affected families lacking genetic diagnosis. We performed whole-exome sequencing of six families and targeted gene sequencing of additional families. We identified 19 mutations in KLHL40 (kelch-like family member 40) in 28 apparently unrelated NEM kindreds of various ethnicities. Accounting for up to 28% of the tested individuals in the Japanese cohort, KLHL40 mutations were found to be the most common cause of this severe form of NEM. Clinical features of affected individuals were severe and distinctive and included fetal akinesia or hypokinesia and contractures, fractures, respiratory failure, and swallowing difficulties at birth. Molecular modeling suggested that the missense substitutions would destabilize the protein. Protein studies showed that KLHL40 is a striated-muscle-specific protein that is absent in KLHL40-associated NEM skeletal muscle. In zebrafish, klhl40a and klhl40b expression is largely confined to the myotome and skeletal muscle, and knockdown of these isoforms results in disruption of muscle structure and loss of movement. We identified KLHL40 mutations as a frequent cause of severe autosomal-recessive NEM and showed that it plays a key role in muscle development and function. Screening of KLHL40 should be a priority in individuals who are affected by autosomal-recessive NEM and who present with prenatal symptoms and/or contractures and in all Japanese individuals with severe NEM.


American Journal of Medical Genetics Part A | 2013

MLL2 and KDM6A mutations in patients with Kabuki syndrome

Noriko Miyake; Eriko Koshimizu; Nobuhiko Okamoto; Seiji Mizuno; Tsutomu Ogata; Toshiro Nagai; Tomoki Kosho; Hirofumi Ohashi; Mitsuhiro Kato; Goro Sasaki; Hiroyo Mabe; Yoriko Watanabe; Makoto Yoshino; Toyojiro Matsuishi; Jun-ichi Takanashi; Vorasuk Shotelersuk; Mustafa Tekin; Nobuhiko Ochi; Masaya Kubota; Naoko Ito; Kenji Ihara; Toshiro Hara; Hidefumi Tonoki; Tohru Ohta; Kayoko Saito; Mari Matsuo; Mari Urano; Takashi Enokizono; Astushi Sato; Hiroyuki Tanaka

Kabuki syndrome is a congenital anomaly syndrome characterized by developmental delay, intellectual disability, specific facial features including long palpebral fissures and ectropion of the lateral third of the lower eyelids, prominent digit pads, and skeletal and visceral abnormalities. Mutations in MLL2 and KDM6A cause Kabuki syndrome. We screened 81 individuals with Kabuki syndrome for mutations in these genes by conventional methods (n = 58) and/or targeted resequencing (n = 45) or whole exome sequencing (n = 5). We identified a mutation in MLL2 or KDM6A in 50 (61.7%) and 5 (6.2%) cases, respectively. Thirty‐five MLL2 mutations and two KDM6A mutations were novel. Non‐protein truncating‐type MLL2 mutations were mainly located around functional domains, while truncating‐type mutations were scattered through the entire coding region. The facial features of patients in the MLL2 truncating‐type mutation group were typical based on those of the 10 originally reported patients with Kabuki syndrome; those of the other groups were less typical. High arched eyebrows, short fifth finger, and hypotonia in infancy were more frequent in the MLL2 mutation group than in the KDM6A mutation group. Short stature and postnatal growth retardation were observed in all individuals with KDM6A mutations, but in only half of the group with MLL2 mutations.


Nature Communications | 2014

De novo SOX11 mutations cause Coffin–Siris syndrome

Yoshinori Tsurusaki; Eriko Koshimizu; Hirofumi Ohashi; Shubha R. Phadke; Ikuyo Kou; Masaaki Shiina; Toshifumi Suzuki; Nobuhiko Okamoto; Shintaro Imamura; Michiaki Yamashita; Satoshi Watanabe; Koh-ichiro Yoshiura; Hirofumi Kodera; Satoko Miyatake; Mitsuko Nakashima; Hirotomo Saitsu; Kazuhiro Ogata; Shiro Ikegawa; Noriko Miyake; Naomichi Matsumoto

Coffin-Siris syndrome (CSS) is a congenital disorder characterized by growth deficiency, intellectual disability, microcephaly, characteristic facial features and hypoplastic nails of the fifth fingers and/or toes. We previously identified mutations in five genes encoding subunits of the BAF complex, in 55% of CSS patients. Here we perform whole-exome sequencing in additional CSS patients, identifying de novo SOX11 mutations in two patients with a mild CSS phenotype. sox11a/b knockdown in zebrafish causes brain abnormalities, potentially explaining the brain phenotype of CSS. SOX11 is the downstream transcriptional factor of the PAX6-BAF complex, highlighting the importance of the BAF complex and SOX11 transcriptional network in brain development.


Journal of Human Genetics | 2015

Detecting copy-number variations in whole-exome sequencing data using the eXome Hidden Markov Model: an ‘exome-first’ approach

Satoko Miyatake; Eriko Koshimizu; Atsushi Fujita; Ryoko Fukai; Eri Imagawa; Chihiro Ohba; Ichiro Kuki; Megumi Nukui; Atsushi Araki; Yoshio Makita; Tsutomu Ogata; Mitsuko Nakashima; Yoshinori Tsurusaki; Noriko Miyake; Hirotomo Saitsu; Naomichi Matsumoto

Whole-exome sequencing (WES) is becoming a standard tool for detecting nucleotide changes, and determining whether WES data can be used for the detection of copy-number variations (CNVs) is of interest. To date, several algorithms have been developed for such analyses, although verification is needed to establish if they fit well for the appropriate purpose, depending on the characteristics of each algorithm. Here, we performed WES CNV analysis using the eXome Hidden Markov Model (XHMM). We validated its performance using 27 rare CNVs previously identified by microarray as positive controls, finding that the detection rate was 59%, or higher (89%) with three or more targets. XHMM can be effectively used, especially for the detection of >200 kb CNVs. XHMM may be useful for deletion breakpoint detection. Next, we applied XHMM to genetically unsolved patients, demonstrating successful identification of pathogenic CNVs: 1.5–1.9-Mb deletions involving NSD1 in patients with unknown overgrowth syndrome leading to the diagnosis of Sotos syndrome, and 6.4-Mb duplication involving MECP2 in affected brothers with late-onset spasm and progressive cerebral/cerebellar atrophy confirming the clinical suspect of MECP2 duplication syndrome. The possibility of an ‘exome-first’ approach for clinical genetic investigation may be considered to save the cost of multiple investigations.


PLOS ONE | 2013

Performance Comparison of Bench-Top Next Generation Sequencers Using Microdroplet PCR-Based Enrichment for Targeted Sequencing in Patients with Autism Spectrum Disorder

Eriko Koshimizu; Satoko Miyatake; Nobuhiko Okamoto; Mitsuko Nakashima; Yoshinori Tsurusaki; Noriko Miyake; Hirotomo Saitsu; Naomichi Matsumoto

Next-generation sequencing (NGS) combined with enrichment of target genes enables highly efficient and low-cost sequencing of multiple genes for genetic diseases. The aim of this study was to validate the accuracy and sensitivity of our method for comprehensive mutation detection in autism spectrum disorder (ASD). We assessed the performance of the bench-top Ion Torrent PGM and Illumina MiSeq platforms as optimized solutions for mutation detection, using microdroplet PCR-based enrichment of 62 ASD associated genes. Ten patients with known mutations were sequenced using NGS to validate the sensitivity of our method. The overall read quality was better with MiSeq, largely because of the increased indel-related error associated with PGM. The sensitivity of SNV detection was similar between the two platforms, suggesting they are both suitable for SNV detection in the human genome. Next, we used these methods to analyze 28 patients with ASD, and identified 22 novel variants in genes associated with ASD, with one mutation detected by MiSeq only. Thus, our results support the combination of target gene enrichment and NGS as a valuable molecular method for investigating rare variants in ASD.


American Journal of Human Genetics | 2017

Biallelic Mutations in MYPN, Encoding Myopalladin, Are Associated with Childhood-Onset, Slowly Progressive Nemaline Myopathy

Satoko Miyatake; Satomi Mitsuhashi; Yukiko K. Hayashi; Enkhsaikhan Purevjav; Atsuko Nishikawa; Eriko Koshimizu; Mikiya Suzuki; Kana Yatabe; Yuzo Tanaka; Katsuhisa Ogata; Satoshi Kuru; Masaaki Shiina; Yoshinori Tsurusaki; Mitsuko Nakashima; Takeshi Mizuguchi; Noriko Miyake; Hirotomo Saitsu; Kazuhiro Ogata; Mitsuru Kawai; Jeffrey A. Towbin; Ikuya Nonaka; Ichizo Nishino; Naomichi Matsumoto

Nemaline myopathy (NM) is a common form of congenital nondystrophic skeletal muscle disease characterized by muscular weakness of proximal dominance, hypotonia, and respiratory insufficiency but typically not cardiac dysfunction. Wide variation in severity has been reported. Intranuclear rod myopathy is a subtype of NM in which rod-like bodies are seen in the nucleus, and it often manifests as a severe phenotype. Although ten mutant genes are currently known to be associated with NM, only ACTA1 is associated with intranuclear rod myopathy. In addition, the genetic cause remains unclear in approximately 25%-30% of individuals with NM. We performed whole-exome sequencing on individuals with histologically confirmed but genetically unsolved NM. Our study included individuals with milder, later-onset NM and identified biallelic loss-of-function mutations in myopalladin (MYPN) in four families. Encoded MYPN is a sarcomeric protein exclusively localized in striated muscle in humans. Individuals with identified MYPN mutations in all four of these families have relatively mild, childhood- to adult-onset NM with slowly progressive muscle weakness. Walking difficulties were recognized around their forties. Decreased respiratory function, cardiac involvement, and intranuclear rods in biopsied muscle were observed in two individuals. MYPN was localized at the Z-line in control skeletal muscles but was absent from affected individuals. Homozygous knockin mice with a nonsense mutation in Mypn showed Z-streaming and nemaline-like bodies adjacent to a disorganized Z-line on electron microscopy, recapitulating the disease. Our results suggest that MYPN screening should be considered in individuals with mild NM, especially when cardiac problems or intranuclear rods are present.


Clinical Genetics | 2016

Delineation of clinical features in Wiedemann–Steiner syndrome caused by KMT2A mutations

Noriko Miyake; Yoshinori Tsurusaki; Eriko Koshimizu; Nobuhiko Okamoto; Tomoki Kosho; Natasha J Brown; Tiong Yang Tan; Patrick Yap; Hiroshi Suzumura; T. Tanaka; Toshiro Nagai; Mitsuko Nakashima; Hirotomo Saitsu; Norio Niikawa; Naomichi Matsumoto

Wiedemann–Steiner syndrome (WSS) is an autosomal dominant congenital anomaly syndrome characterized by hairy elbows, dysmorphic facial appearances (hypertelorism, thick eyebrows, downslanted and vertically narrow palpebral fissures), pre‐ and post‐natal growth deficiency, and psychomotor delay. WSS is caused by heterozygous mutations in KMT2A (also known as MLL), a gene encoding a histone methyltransferase. Here, we identify six novel KMT2A mutations in six WSS patients, with four mutations occurring de novo. Interestingly, some of the patients were initially diagnosed with atypical Kabuki syndrome, which is caused by mutations in KMT2D or KDM6A, genes also involved in histone methylation. KMT2A mutations and clinical features are summarized in our six patients together with eight previously reported patients. Furthermore, clinical comparison of the two syndromes is discussed in detail.


American Journal of Medical Genetics Part A | 2013

Whole-exome sequencing identified a homozygous FNBP4 mutation in a family with a condition similar to microphthalmia with limb anomalies

Yukiko Kondo; Eriko Koshimizu; André Mégarbané; Haruka Hamanoue; Ippei Okada; Kiyomi Nishiyama; Hirofumi Kodera; Satoko Miyatake; Yoshinori Tsurusaki; Mitsuko Nakashima; Hiroshi Doi; Noriko Miyake; Hirotomo Saitsu; Naomichi Matsumoto

Microphthalmia with limb anomalies (MLA), also known as Waardenburg anophthalmia syndrome or ophthalmoacromelic syndrome, is a rare autosomal recessive disorder. Recently, we and others successfully identified SMOC1 as the causative gene for MLA. However, there are several MLA families without SMOC1 abnormality, suggesting locus heterogeneity in MLA. We aimed to identify a pathogenic mutation in one Lebanese family having an MLA‐like condition without SMOC1 mutation by whole‐exome sequencing (WES) combined with homozygosity mapping. A c.683C>T (p.Thr228Met) in FNBP4 was found as a primary candidate, drawing the attention that FNBP4 and SMOC1 may potentially modulate BMP signaling.


Neuromuscular Disorders | 2014

Deep sequencing detects very-low-grade somatic mosaicism in the unaffected mother of siblings with nemaline myopathy

Satoko Miyatake; Eriko Koshimizu; Yukiko K. Hayashi; Kazushi Miya; Masaaki Shiina; Mitsuko Nakashima; Yoshinori Tsurusaki; Noriko Miyake; Hirotomo Saitsu; Kazuhiro Ogata; Ichizo Nishino; Naomichi Matsumoto

When an expected mutation in a particular disease-causing gene is not identified in a suspected carrier, it is usually assumed to be due to germline mosaicism. We report here very-low-grade somatic mosaicism in ACTA1 in an unaffected mother of two siblings affected with a neonatal form of nemaline myopathy. The mosaicism was detected by deep resequencing using a next-generation sequencer. We identified a novel heterozygous mutation in ACTA1, c.448A>G (p.Thr150Ala), in the affected siblings. Three-dimensional structural modeling suggested that this mutation may affect polymerization and/or actins interactions with other proteins. In this family, we expected autosomal dominant inheritance with either parent demonstrating germline or somatic mosaicism. Sanger sequencing identified no mutation. However, further deep resequencing of this mutation on a next-generation sequencer identified very-low-grade somatic mosaicism in the mother: 0.4%, 1.1%, and 8.3% in the saliva, blood leukocytes, and nails, respectively. Our study demonstrates the possibility of very-low-grade somatic mosaicism in suspected carriers, rather than germline mosaicism.

Collaboration


Dive into the Eriko Koshimizu's collaboration.

Top Co-Authors

Avatar

Noriko Miyake

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuhiro Ogata

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Masaaki Shiina

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Nobuhiko Okamoto

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge