Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erin Hickey is active.

Publication


Featured researches published by Erin Hickey.


Nature | 1997

The complete genome sequence of the gastric pathogen Helicobacter pylori

Jean-F. Tomb; Owen White; Anthony R. Kerlavage; Rebecca A. Clayton; Granger Sutton; Robert D. Fleischmann; Karen A. Ketchum; Hans-Peter Klenk; Steven R. Gill; Brian A. Dougherty; Karen E. Nelson; John Quackenbush; Lixin Zhou; Ewen F. Kirkness; Scott N. Peterson; Brendan J. Loftus; Delwood Richardson; Robert J. Dodson; Hanif G. Khalak; Anna Glodek; Keith McKenney; Lisa M. Fitzegerald; Norman H. Lee; Mark D. Adams; Erin Hickey; Douglas E. Berg; Jeanine D. Gocayne; Teresa Utterback; Jeremy Peterson; Jenny M. Kelley

Helicobacter pylori, strain 26695, has a circular genome of 1,667,867 base pairs and 1,590 predicted coding sequences. Sequence analysis indicates that H. pylori has well-developed systems for motility, for scavenging iron, and for DNA restriction and modification. Many putative adhesins, lipoproteins and other outer membrane proteins were identified, underscoring the potential complexity of host–pathogen interaction. Based on the large number of sequence-related genes encoding outer membrane proteins and the presence of homopolymeric tracts and dinucleotide repeats in coding sequences, H. pylori, like several other mucosal pathogens, probably uses recombination and slipped-strand mispairing within repeats as mechanisms for antigenic variation and adaptive evolution. Consistent with its restricted niche, H. pylori has a few regulatory networks, and a limited metabolic repertoire and biosynthetic capacity. Its survival in acid conditions depends, in part, on its ability to establish a positive inside-membrane potential in low pH.


Nature | 1997

Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi

Claire M. Fraser; Sherwood Casjens; Wai Mun Huang; Granger Sutton; Rebecca A. Clayton; Raju Lathigra; Owen White; Karen A. Ketchum; Robert J. Dodson; Erin Hickey; Michelle L. Gwinn; Brian A. Dougherty; Jean Francois Tomb; Robert D. Fleischmann; Delwood Richardson; Jeremy Peterson; Anthony R. Kerlavage; John Quackenbush; Mark S. Hanson; René Van Vugt; Nanette Palmer; Mark D. Adams; Jeannine D. Gocayne; Janice Weidman; Teresa Utterback; Larry Watthey; Lisa McDonald; Patricia Artiach; Cheryl Bowman; Stacey Garland

The genome of the bacterium Borrelia burgdorferi B31, the aetiologic agent of Lyme disease, contains a linear chromosome of 910,725 base pairs and at least 17 linear and circular plasmids with a combined size of more than 533,000 base pairs. The chromosome contains 853 genes encoding a basic set of proteins for DNA replication, transcription, translation, solute transport and energy metabolism, but, like Mycoplasma genitalium, it contains no genes for cellular biosynthetic reactions. Because B. burgdorferi and M. genitalium are distantly related eubacteria, we suggest that their limited metabolic capacities reflect convergent evolution by gene loss from more metabolically competent progenitors. Of 430 genes on 11 plasmids, most have no known biological function; 39% of plasmid genes are paralogues that form 47 gene families. The biological significance of the multiple plasmid-encoded genes is not clear, although they may be involved in antigenic variation or immune evasion.


Nature | 2000

DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae

John F. Heidelberg; Jonathan A. Eisen; William C. Nelson; Rebecca A. Clayton; Michelle L. Gwinn; Robert J. Dodson; Daniel H. Haft; Erin Hickey; Jeremy Peterson; Lowell Umayam; Steven R. Gill; Karen E. Nelson; Timothy D. Read; Delwood Richardson; Maria D. Ermolaeva; Jessica Vamathevan; Steven Bass; Haiying Qin; Ioana Dragoi; Patrick Sellers; Lisa McDonald; Teresa Utterback; Robert D. Fleishmann; William C. Nierman; Owen White; Hamilton O. Smith; Rita R. Colwell; John J. Mekalanos; J. Craig Venter; Claire M. Fraser

Here we determine the complete genomic sequence of the Gram negative, γ-Proteobacterium Vibrio cholerae El Tor N16961 to be 4,033,460 base pairs (bp). The genome consists of two circular chromosomes of 2,961,146 bp and 1,072,314 bp that together encode 3,885 open reading frames. The vast majority of recognizable genes for essential cell functions (such as DNA replication, transcription, translation and cell-wall biosynthesis) and pathogenicity (for example, toxins, surface antigens and adhesins) are located on the large chromosome. In contrast, the small chromosome contains a larger fraction (59%) of hypothetical genes compared with the large chromosome (42%), and also contains many more genes that appear to have origins other than the γ-Proteobacteria. The small chromosome also carries a gene capture system (the integron island) and host ‘addiction’ genes that are typically found on plasmids; thus, the small chromosome may have originally been a megaplasmid that was captured by an ancestral Vibrio species. The V. cholerae genomic sequence provides a starting point for understanding how a free-living, environmental organism emerged to become a significant human bacterial pathogen.


Nature | 1999

Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima.

Karen E. Nelson; Rebecca A. Clayton; Steven R. Gill; Michelle L. Gwinn; Robert J. Dodson; Daniel H. Haft; Erin Hickey; Jeremy Peterson; William C. Nelson; Karen A. Ketchum; Lisa McDonald; Teresa Utterback; Joel A. Malek; Katja D. Linher; Mina M. Garrett; Ashley M. Stewart; Matthew D. Cotton; Matthew S. Pratt; Cheryl A. Phillips; Delwood Richardson; John F. Heidelberg; Granger Sutton; Robert D. Fleischmann; Jonathan A. Eisen; Owen White; Hamilton O. Smith; J. Craig Venter; Claire M. Fraser

The 1,860,725-base-pair genome of Thermotoga maritima MSB8 contains 1,877 predicted coding regions, 1,014 (54%) of which have functional assignments and 863 (46%) of which are of unknown function. Genome analysis reveals numerous pathways involved in degradation of sugars and plant polysaccharides, and 108 genes that have orthologues only in the genomes of other thermophilic Eubacteria and Archaea. Of the Eubacteria sequenced to date, T.maritima has the highest percentage (24%) of genes that are most similar to archaeal genes. Eighty-one archaeal-like genes are clustered in 15 regions of the T. maritima genome that range in size from 4 to 20 kilobases. Conservation of gene order between T. maritima and Archaea in many of the clustered regions suggests that lateral gene transfer may have occurred between thermophilic Eubacteria and Archaea.


Nature | 1997

The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus.

Hans-Peter Klenk; Rebecca A. Clayton; Jean-Francois Tomb; Owen White; Karen E. Nelson; Karen A. Ketchum; Robert J. Dodson; Michelle L. Gwinn; Erin Hickey; Jeremy Peterson; Delwood Richardson; Anthony R. Kerlavage; David E. Graham; Nikos Kyrpides; Robert D. Fleischmann; John Quackenbush; Norman H. Lee; Granger Sutton; Steven R. Gill; Ewen F. Kirkness; Brian A. Dougherty; Keith McKenney; Mark D. Adams; Brendan J. Loftus; Scott N. Peterson; Claudia I. Reich; Leslie K. McNeil; Jonathan H. Badger; Anna Glodek; Lixin Zhou

Archaeoglobus fulgidus is the first sulphur-metabolizing organism to have its genome sequence determined. Its genome of 2,178,400 base pairs contains 2,436 open reading frames (ORFs). The information processing systems and the biosynthetic pathways for essential components (nucleotides, amino acids and cofactors) have extensive correlation with their counterparts in the archaeon Methanococcus jannaschii . The genomes of these two Archaea indicate dramatic differences in the way these organisms sense their environment, perform regulatory and transport functions, and gain energy. In contrast to M. jannaschii , A. fulgidus has fewer restriction–modification systems, and none of its genes appears to contain inteins. A quarter (651 ORFs) of the A. fulgidus genome encodes functionally uncharacterized yet conserved proteins, two-thirds of which are shared with M. jannaschii (428 ORFs). Another quarter of the genome encodes new proteins indicating substantial archaeal gene diversity.


Molecular Microbiology | 2002

A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi

Sherwood Casjens; Nanette Palmer; Rene van Vugt; Wai Mun Huang; Brian Stevenson; Patricia A. Rosa; Raju Lathigra; Granger Sutton; Jeremy Peterson; Robert J. Dodson; Daniel H. Haft; Erin Hickey; Michelle L. Gwinn; Owen White; Claire M. Fraser

We have determined that Borrelia burgdorferi strain B31 MI carries 21 extrachromosomal DNA elements, the largest number known for any bacterium. Among these are 12 linear and nine circular plasmids, whose sequences total 610 694 bp. We report here the nucleotide sequence of three linear and seven circular plasmids (comprising 290 546 bp) in this infectious isolate. This completes the genome sequencing project for this organism; its genome size is 1 521 419 bp (plus about 2000 bp of undetermined telomeric sequences). Analysis of the sequence implies that there has been extensive and sometimes rather recent DNA rearrangement among a number of the linear plasmids. Many of these events appear to have been mediated by recombinational processes that formed duplications. These many regions of similarity are reflected in the fact that most plasmid genes are members of one of the genomes 161 paralogous gene families; 107 of these gene families, which vary in size from two to 41 members, contain at least one plasmid gene. These rearrangements appear to have contributed to a surprisingly large number of apparently non‐functional pseudogenes, a very unusual feature for a prokaryotic genome. The presence of these damaged genes suggests that some of the plasmids may be in a period of rapid evolution. The sequence predicts 535 plasmid genes ≥300 bp in length that may be intact and 167 apparently mutationally damaged and/or unexpressed genes (pseudogenes). The large majority, over 90%, of genes on these plasmids have no convincing similarity to genes outside Borrelia, suggesting that they perform specialized functions.


Journal of Bacteriology | 2002

Whole-Genome Comparison of Mycobacterium tuberculosis Clinical and Laboratory Strains

Robert D. Fleischmann; D. Alland; Jonathan A. Eisen; L. Carpenter; Owen White; Jeremy Peterson; Robert T. DeBoy; Robert J. Dodson; Michelle L. Gwinn; Daniel H. Haft; Erin Hickey; James F. Kolonay; William C. Nelson; Lowell Umayam; Maria D. Ermolaeva; Arthur L. Delcher; Terry Utterback; Janice Weidman; Hoda Khouri; John Gill; A. Mikula; W. Bishai; W. R. Jacobs; Venter Jc; Claire M. Fraser

Virulence and immunity are poorly understood in Mycobacterium tuberculosis. We sequenced the complete genome of the M. tuberculosis clinical strain CDC1551 and performed a whole-genome comparison with the laboratory strain H37Rv in order to identify polymorphic sequences with potential relevance to disease pathogenesis, immunity, and evolution. We found large-sequence and single-nucleotide polymorphisms in numerous genes. Polymorphic loci included a phospholipase C, a membrane lipoprotein, members of an adenylate cyclase gene family, and members of the PE/PPE gene family, some of which have been implicated in virulence or the host immune response. Several gene families, including the PE/PPE gene family, also had significantly higher synonymous and nonsynonymous substitution frequencies compared to the genome as a whole. We tested a large sample of M. tuberculosis clinical isolates for a subset of the large-sequence and single-nucleotide polymorphisms and found widespread genetic variability at many of these loci. We performed phylogenetic and epidemiological analysis to investigate the evolutionary relationships among isolates and the origins of specific polymorphic loci. A number of these polymorphisms appear to have occurred multiple times as independent events, suggesting that these changes may be under selective pressure. Together, these results demonstrate that polymorphisms among M. tuberculosis strains are more extensive than initially anticipated, and genetic variation may have an important role in disease pathogenesis and immunity.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium

Jonathan A. Eisen; Karen E. Nelson; Ian T. Paulsen; John F. Heidelberg; Martin Wu; Robert J. Dodson; Robert T. DeBoy; Michelle L. Gwinn; William C. Nelson; Daniel H. Haft; Erin Hickey; Jeremy Peterson; A. Scott Durkin; James L. Kolonay; Fan Yang; Ingeborg Holt; Lowell Umayam; Tanya Mason; Michael Brenner; Terrance Shea; Debbie S. Parksey; William C. Nierman; Tamara Feldblyum; Cheryl L. Hansen; M. Brook Craven; Diana Radune; Jessica Vamathevan; Hoda Khouri; Owen White; Tanja M. Gruber

The complete genome of the green-sulfur eubacterium Chlorobium tepidum TLS was determined to be a single circular chromosome of 2,154,946 bp. This represents the first genome sequence from the phylum Chlorobia, whose members perform anoxygenic photosynthesis by the reductive tricarboxylic acid cycle. Genome comparisons have identified genes in C. tepidum that are highly conserved among photosynthetic species. Many of these have no assigned function and may play novel roles in photosynthesis or photobiology. Phylogenomic analysis reveals likely duplications of genes involved in biosynthetic pathways for photosynthesis and the metabolism of sulfur and nitrogen as well as strong similarities between metabolic processes in C. tepidum and many Archaeal species.


Nature | 1998

Corrections: The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus

Hans-Peter Klenk; Rebecca A. Clayton; Jean-Francois Tomb; Owen White; Karen E. Nelson; Karen A. Ketchum; Robert J. Dodson; Michelle L. Gwinn; Erin Hickey; Jeremy Peterson; Delwood Richardson; Anthony R. Kerlavage; David E. Graham; Nikos C. Kyrpides; Robert D. Fleischmann; John Quackenbush; Norman H. Lee; Granger Sutton; Steven R. Gill; Ewen F. Kirkness; Brian A. Dougherty; Keith McKenney; Mark D. Adams; Brendan J. Loftus; Scott N. Peterson; Claudia I. Reich; Leslie K. McNeil; Jonathan H. Badger; Anna Glodek; Lixin Zhou

This corrects the article DOI: 10.1038/37052


Science | 2001

Complete genome sequence of a virulent isolate of Streptococcus pneumoniae

Hervé Tettelin; Karen E. Nelson; Ian T. Paulsen; Jonathan A. Eisen; Timothy D. Read; Scott N. Peterson; John F. Heidelberg; Robert T. DeBoy; Daniel H. Haft; Robert J. Dodson; Anthony S. Durkin; Michelle L. Gwinn; James F. Kolonay; William C. Nelson; Jeremy Peterson; Lowell Umayam; Owen White; Matthew Lewis; Diana Radune; E. Holtzapple; Hoda Khouri; Alex M. Wolf; Terry Utterback; C. L. Hansen; Lisa McDonald; Tamara Feldblyum; Samuel V. Angiuoli; T. Dickinson; Erin Hickey; Ingeborg Holt

Collaboration


Dive into the Erin Hickey's collaboration.

Top Co-Authors

Avatar

Jeremy Peterson

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Owen White

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

J. Craig Venter

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen E. Nelson

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge