Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erin Jackson is active.

Publication


Featured researches published by Erin Jackson.


Cancer Research | 2004

CXCR4 regulates growth of both primary and metastatic breast cancer

Matthew C. Smith; Kathryn E. Luker; Joel R. Garbow; Julie L. Prior; Erin Jackson; David Piwnica-Worms; Gary D. Luker

The chemokine receptor CXCR4 and its cognate ligand CXCL12 recently have been proposed to regulate the directional trafficking and invasion of breast cancer cells to sites of metastases. However, effects of CXCR4 on the growth of primary breast cancer tumors and established metastases and survival have not been determined. We used stable RNAi to reduce expression of CXCR4 in murine 4T1 cells, a highly metastatic mammary cancer cell line that is a model for stage IV human breast cancer. Using noninvasive bioluminescence and magnetic resonance imaging, we showed that knockdown of CXCR4 significantly limited the growth of orthotopically transplanted breast cancer cells. Mice in which parental 4T1 cells were implanted had progressively enlarging tumors that spontaneously metastasized, and these animals all died from metastatic disease. Remarkably, RNAi of CXCR4 prevented primary tumor formation in some mice, and all mice transplanted with CXCR RNAi cells survived without developing macroscopic metastases. To analyze effects of CXCR4 on metastases to the lung, an organ commonly affected by metastatic breast cancer, we injected tumor cells intravenously and monitored cell growth with bioluminescence imaging. Inhibiting CXCR4 with RNAi, or the specific antagonist AMD3100, substantially delayed the growth of 4T1 cells in the lung, although neither RNAi nor AMD3100 prolonged overall survival in mice with experimental lung metastases. These data indicate that CXCR4 is required to initiate proliferation and/or promote survival of breast cancer cells in vivo and suggest that CXCR4 inhibitors will improve treatment of patients with primary and metastatic breast cancer.


Journal of Cell Biology | 2009

Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease

Jeong Sun Ju; Rodrigo A. Fuentealba; Sara E. Miller; Erin Jackson; David Piwnica-Worms; Robert H. Baloh; Conrad C. Weihl

Accumulation of autophagosomes because of impaired autophagy during valosin-containing protein (VCP)–linked dementia is explained by the absence or reduced activity of VCP.


Journal of Clinical Investigation | 2011

Notch1 loss of heterozygosity causes vascular tumors and lethal hemorrhage in mice

Zhenyi Liu; Ahu Turkoz; Erin Jackson; Joseph C. Corbo; John A. Engelbach; Joel R. Garbow; David Piwnica-Worms; Raphael Kopan

The role of the Notch signaling pathway in tumor development is complex, with Notch1 functioning either as an oncogene or as a tumor suppressor in a context-dependent manner. To further define the role of Notch1 in tumor development, we systematically surveyed for tumor suppressor activity of Notch1 in vivo. We combined the previously described Notch1 intramembrane proteolysis-Cre (Nip1::Cre) allele with a floxed Notch1 allele to create a mouse model for sporadic, low-frequency loss of Notch1 heterozygosity. Through this approach, we determined the cell types most affected by Notch1 loss. We report that the loss of Notch1 caused widespread vascular tumors and organism lethality secondary to massive hemorrhage. These findings reflected a cell-autonomous role for Notch1 in suppressing neoplasia in the vascular system and provide a model by which to explore the mechanism of neoplastic transformation of endothelial cells. Importantly, these results raise concerns regarding the safety of chronic application of drugs targeting the Notch pathway, specifically those targeting Notch1, because of mechanism-based toxicity in the endothelium. Our strategy also can be broadly applied to induce sporadic in vivo loss of heterozygosity of any conditional alleles in progenitors that experience Notch1 activation.


PLOS ONE | 2010

Cerenkov Radiation Energy Transfer (CRET) Imaging: A Novel Method for Optical Imaging of PET Isotopes in Biological Systems

Robin S. Dothager; Reece J. Goiffon; Erin Jackson; Scott E. Harpstrite; David Piwnica-Worms

Background Positron emission tomography (PET) allows sensitive, non-invasive analysis of the distribution of radiopharmaceutical tracers labeled with positron (β+)-emitting radionuclides in small animals and humans. Upon β+ decay, the initial velocity of high-energy β+ particles can momentarily exceed the speed of light in tissue, producing Cerenkov radiation that is detectable by optical imaging, but is highly absorbed in living organisms. Principal Findings To improve optical imaging of Cerenkov radiation in biological systems, we demonstrate that Cerenkov radiation from decay of the PET isotopes 64Cu and 18F can be spectrally coupled by energy transfer to high Stokes-shift quantum nanoparticles (Qtracker705) to produce highly red-shifted photonic emissions. Efficient energy transfer was not detected with 99mTc, a predominantly γ-emitting isotope. Similar to bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET), herein we define the Cerenkov radiation energy transfer (CRET) ratio as the normalized quotient of light detected within a spectral window centered on the fluorophore emission divided by light detected within a spectral window of the Cerenkov radiation emission to quantify imaging signals. Optical images of solutions containing Qtracker705 nanoparticles and [18F]FDG showed CRET ratios in vitro as high as 8.8±1.1, while images of mice with subcutaneous pseudotumors impregnated with Qtracker705 following intravenous injection of [18F]FDG showed CRET ratios in vivo as high as 3.5±0.3. Conclusions Quantitative CRET imaging may afford a variety of novel optical imaging applications and activation strategies for PET radiopharmaceuticals and other isotopes in biomaterials, tissues and live animals.


Cancer Research | 2007

Blocking CXCR4-Mediated Cyclic AMP Suppression Inhibits Brain Tumor Growth In vivo

Lihua Yang; Erin Jackson; B. Mark Woerner; Arie Perry; David Piwnica-Worms; Joshua B. Rubin

The chemokine CXCL12 and its cognate receptor CXCR4 regulate malignant brain tumor growth and are potential chemotherapeutic targets. However, the molecular basis for CXCL12-induced tumor growth remains unclear, and the optimal approach to inhibiting CXCR4 function in cancer is unknown. To develop such a therapeutic approach, we investigated the signaling pathways critical for CXCL12 function in normal and malignant cells. We discovered that CXCL12-dependent tumor growth is dependent upon sustained inhibition of cyclic AMP (cAMP) production, and that the antitumor activity of the specific CXCR4 antagonist AMD 3465 is associated with blocking cAMP suppression. Consistent with these findings, we show that pharmacologic elevation of cAMP with the phosphodiesterase inhibitor Rolipram suppresses tumor cell growth in vitro and, upon oral administration, inhibits intracranial growth in xenograft models of malignant brain tumors with comparable efficacy to AMD 3465. These data indicate that the clinical evaluation of phosphodiesterase inhibitors in the treatment of patients with brain tumors is warranted.


Clinical Cancer Research | 2008

Targeted Inhibition of Cyclic AMP Phosphodiesterase-4 Promotes Brain Tumor Regression

Patricia Goldhoff; Nicole M. Warrington; David D. Limbrick; A Hope; B. Mark Woerner; Erin Jackson; Arie Perry; David Piwnica-Worms; Joshua B. Rubin

Purpose: As favorable outcomes from malignant brain tumors remain limited by poor survival and treatment-related toxicity, novel approaches to cure are essential. Previously, we identified the cyclic AMP phosphodiesterase-4 (PDE4) inhibitor Rolipram as a potent antitumor agent. Here, we investigate the role of PDE4 in brain tumors and examine the utility of PDE4 as a therapeutic target. Experimental Design: Immunohistochemistry was used to evaluate the expression pattern of a subfamily of PDE4, PDE4A, in multiple brain tumor types. To evaluate the effect of PDE4A on growth, a brain-specific isoform, PDE4A1 was overexpressed in xenografts of Daoy medulloblastoma and U87 glioblastoma cells. To determine therapeutic potential of PDE4 inhibition, Rolipram, temozolomide, and radiation were tested alone and in combination on mice bearing intracranial U87 xenografts. Results: We found that PDE4A is expressed in medulloblastoma, glioblastoma, oligodendroglioma, ependymoma, and meningioma. Moreover, when PDE4A1 was overexpressed in Daoy medulloblastoma and U87 glioblastoma cells, in vivo doubling times were significantly shorter for PDE4A1-overexpressing xenografts compared with controls. In long-term survival and bioluminescence studies, Rolipram in combination with first-line therapy for malignant gliomas (temozolomide and conformal radiation therapy) enhanced the survival of mice bearing intracranial xenografts of U87 glioblastoma cells. Bioluminescence imaging indicated that whereas temozolomide and radiation therapy arrested intracranial tumor growth, the addition of Rolipram to this regimen resulted in tumor regression. Conclusions: This study shows that PDE4 is widely expressed in brain tumors and promotes their growth and that inhibition with Rolipram overcomes tumor resistance and mediates tumor regression.


Cancer Research | 2010

Cyclic AMP Suppression Is Sufficient to Induce Gliomagenesis in a Mouse Model of Neurofibromatosis-1

Nicole M. Warrington; Scott M. Gianino; Erin Jackson; Patricia Goldhoff; Joel R. Garbow; David Piwnica-Worms; David H. Gutmann; Joshua B. Rubin

Current models of oncogenesis incorporate the contributions of chronic inflammation and aging to the patterns of tumor formation. These oncogenic pathways, involving leukocytes and fibroblasts, are not readily applicable to brain tumors (glioma), and other mechanisms must account for microenvironmental influences on central nervous system tumorigenesis. Previous studies from our laboratories have used neurofibromatosis-1 (NF1) genetically engineered mouse (GEM) models to understand the spatial restriction of glioma formation to the optic pathway of young children. Based on our initial findings, we hypothesize that brain region-specific differences in cAMP levels account for the pattern of NF1 gliomagenesis. To provide evidence that low levels of cAMP promote glioma formation in NF1, we generated foci of decreased cAMP in brain regions where gliomas rarely form in children with NF1. Focal cAMP reduction was achieved by forced expression of phosphodiesterase 4A1 (PDE4A1) in the cortex of Nf1 GEM strains. Ectopic PDE4A1 expression produced hypercellular lesions with features of human NF1-associated glioma. Conversely, pharmacologic elevation of cAMP with the PDE4 inhibitor rolipram dramatically inhibited optic glioma growth and tumor size in Nf1 GEM in vivo. Together, these results indicate that low levels of cAMP in a susceptible Nf1 mouse strain are sufficient to promote gliomagenesis, and justify the implementation of cAMP-based stroma-targeted therapies for glioma.


Autophagy | 2009

Quantitation of selective autophagic protein aggregate degradation in vitro and in vivo using luciferase reporters

Jeong Sun Ju; Sara E. Miller; Erin Jackson; Ken Cadwell; David Piwnica-Worms; Conrad C. Weihl

The analysis of autophagy in cells and tissue has principally been performed via qualitative measures. These assays identify autophagosomes or measure the conversion of LC3I to LC3II. However, qualitative assays fail to quantitate the degradation of an autophagic substrate and therefore only indirectly measure an intact autophagic system. “Autophagic flux” can be measured using long-lived proteins that are degraded via autophagy. We developed a quantifiable luciferase reporter assay that measures the degradation of a long-lived polyglutamine protein aggregate, polyQ80-luciferase. Using this reporter, the induction of autophagy via starvation or rapamycin in cells preferentially decreases polyQ80-luciferase when compared with a nonaggregating polyQ19-luciferase after four hours of treatment. This response was both time- and concentration-dependent, prevented by autophagy inhibitors and absent in ATG5 knockout cells. We adapted this assay to living animals by electroporating polyQ19-luciferase and polyQ80-luciferase expression constructs into the right and left tibialis anterior (TA) muscles of mice, respectively. The change in the ratio of polyQ80-luciferase to polyQ19-luciferase signal before and after autophagic stimulation or inhibition was quantified via in vivo bioluminescent imaging. Following two days of starvation or treatment with intraperitoneal rapamycin, there was a ~35% reduction in the ratio of polyQ80:polyQ19-luciferase activity, consistent with the selective autophagic degradation of polyQ80 protein. This autophagic response in skeletal muscle in vivo was abrogated by co-treatment with chloroquine and in ATG16L1 hypomorphic mice. Our study demonstrates a method to quantify the autophagic flux of an expanded polyglutamine via luciferase reporters in vitro and in vivo.


Clinical Cancer Research | 2009

Immunodeficient Mouse Strains Display Marked Variability in Growth of Human Melanoma Lung Metastases

Beatriz M. Carreno; Joel R. Garbow; Grant Kolar; Erin Jackson; John A. Engelbach; Michelle Becker-Hapak; Leonidas N. Carayannopoulos; David Piwnica-Worms; Gerald P. Linette

Purpose: Immunodeficient mice serve as critical hosts for transplantation of xenogeneic cells for in vivo analysis of various biological processes. Because investigators typically select one or two immunodeficient mouse strains as recipients, no comprehensive study has been published documenting differences in human tumor engraftment. Taking advantage of the increased metastatic potential of RhoC-expressing human (A375) melanoma cells, we evaluate four immunodeficient mouse strains: severe combined immunodeficiency (scid), nonobese diabetic (NOD)-scid, NOD-scid β2mnull, and NOD-scid IL2Rγnull as xenograft tumor recipients. Experimental Design: Bioluminescence, magnetic resonance imaging, and histopathology were used to monitor serial tumor growth. Natural killer (NK) cell function was examined in each mouse strain using standard 51Chromium release assays. Results: Melanoma metastases growth is delayed and variable in scid and NOD-scid mice. In contrast, NOD-scid β2mnull and NOD-scid IL2Rγnull mice show rapid tumor engraftment, although tumor growth is variable in NOD-scid β2mnull mice. NK cells were detected in all strains except NOD-scid IL2Rγnull, and in vitro activated scid, NOD-scid, and NOD-scid β2mnull NK cells kill human melanoma lines and primary melanoma cells. Expression of human NKG2D ligands MHC class I chain–related A and B molecules renders melanoma susceptible to murine NK cell–mediated cytotoxicity and killing is inhibited by antibody blockade of murine NKG2D. Conclusions: Murine NKG2D recognition of MICA/B is an important receptor-ligand interaction used by NK cells in immunodeficient strains to limit engraftment of human tumors. The absolute NK deficiency in NOD-scid IL2Rγnull animals makes this strain an excellent recipient of melanoma and potentially other human malignancies.


PLOS ONE | 2012

CXCL12 Mediates Trophic Interactions between Endothelial and Tumor Cells in Glioblastoma

S. Rao; Rajarshi Sengupta; Eun Joo Choe; B. Mark Woerner; Erin Jackson; Tao Sun; Jeffrey R. Leonard; David Piwnica-Worms; Joshua B. Rubin

Emerging evidence suggests endothelial cells (EC) play a critical role in promoting Glioblastoma multiforme (GBM) cell proliferation and resistance to therapy. The molecular basis for GBM-EC interactions is incompletely understood. We hypothesized that the chemokine CXCL12 and its receptor CXCR4 could mediate direct interactions between GBM cells and tumor-associated endothelial cells and that disruption of this interaction might be the molecular basis for the anti-tumor effects of CXCR4 antagonists. We investigated this possibility in vivo and in an in vitro co-culture model that incorporated extracellular matrix, primary human brain microvascular ECs (HBMECs) and either an established GBM cell line or primary GBM specimens. Depletion of CXCR4 in U87 GBM cells blocked their growth as intracranial xenografts indicating that tumor cell CXCR4 is required for tumor growth in vivo. In vitro, co-culture of either U87 cells or primary GBM cells with HBMECs resulted in their co-localization and enhanced GBM cell growth. Genetic manipulation of CXCL12 expression and pharmacological inhibition of its receptors CXCR4 and CXCR7 revealed that the localizing and trophic effects of endothelial cells on GBM cells were dependent upon CXCL12 and CXCR4. These findings indicate that the CXCL12/CXCR4 pathway directly mediates endothelial cell trophic function in GBMs and that inhibition of CXCL12-CXCR4 signaling may uniquely target this activity. Therapeutic disruption of endothelial cell trophic functions could complement the structural disruption of anti-angiogenic regimens and, in combination, might also improve the efficacy of radiation and chemotherapy in treating GBMs.

Collaboration


Dive into the Erin Jackson's collaboration.

Top Co-Authors

Avatar

David Piwnica-Worms

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Joshua B. Rubin

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Joel R. Garbow

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

B. Mark Woerner

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Nicole M. Warrington

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jeffrey R. Leonard

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

John A. Engelbach

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Albert H. Kim

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Arie Perry

University of California

View shared research outputs
Top Co-Authors

Avatar

Beatriz M. Carreno

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge