Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erin L. Doyle is active.

Publication


Featured researches published by Erin L. Doyle.


Nucleic Acids Research | 2011

Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting

Tomas Cermak; Erin L. Doyle; Michelle Christian; Li-Li Wang; Yong Zhang; Clarice L. Schmidt; Joshua A. Baller; Nikunj V. Somia; Adam J. Bogdanove; Daniel F. Voytas

TALENs are important new tools for genome engineering. Fusions of transcription activator-like (TAL) effectors of plant pathogenic Xanthomonas spp. to the FokI nuclease, TALENs bind and cleave DNA in pairs. Binding specificity is determined by customizable arrays of polymorphic amino acid repeats in the TAL effectors. We present a method and reagents for efficiently assembling TALEN constructs with custom repeat arrays. We also describe design guidelines based on naturally occurring TAL effectors and their binding sites. Using software that applies these guidelines, in nine genes from plants, animals and protists, we found candidate cleavage sites on average every 35 bp. Each of 15 sites selected from this set was cleaved in a yeast-based assay with TALEN pairs constructed with our reagents. We used two of the TALEN pairs to mutate HPRT1 in human cells and ADH1 in Arabidopsis thaliana protoplasts. Our reagents include a plasmid construct for making custom TAL effectors and one for TAL effector fusions to additional proteins of interest. Using the former, we constructed de novo a functional analog of AvrHah1 of Xanthomonas gardneri. The complete plasmid set is available through the non-profit repository AddGene and a web-based version of our software is freely accessible online.


Genetics | 2010

Targeting DNA Double-Strand Breaks with TAL Effector Nucleases

Michelle Christian; Tomas Cermak; Erin L. Doyle; Clarice L. Schmidt; Feng Zhang; Aaron W. Hummel; Adam J. Bogdanove; Daniel F. Voytas

Engineered nucleases that cleave specific DNA sequences in vivo are valuable reagents for targeted mutagenesis. Here we report a new class of sequence-specific nucleases created by fusing transcription activator-like effectors (TALEs) to the catalytic domain of the FokI endonuclease. Both native and custom TALE-nuclease fusions direct DNA double-strand breaks to specific, targeted sites.


Nucleic Acids Research | 2012

TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction

Erin L. Doyle; Nicholas J. Booher; Daniel Standage; Daniel F. Voytas; Volker Brendel; John K. VanDyk; Adam J. Bogdanove

Transcription activator-like (TAL) effectors are repeat-containing proteins used by plant pathogenic bacteria to manipulate host gene expression. Repeats are polymorphic and individually specify single nucleotides in the DNA target, with some degeneracy. A TAL effector-nucleotide binding code that links repeat type to specified nucleotide enables prediction of genomic binding sites for TAL effectors and customization of TAL effectors for use in DNA targeting, in particular as custom transcription factors for engineered gene regulation and as site-specific nucleases for genome editing. We have developed a suite of web-based tools called TAL Effector-Nucleotide Targeter 2.0 (TALE-NT 2.0; https://boglab.plp.iastate.edu/) that enables design of custom TAL effector repeat arrays for desired targets and prediction of TAL effector binding sites, ranked by likelihood, in a genome, promoterome or other sequence of interest. Search parameters can be set by the user to work with any TAL effector or TAL effector nuclease architecture. Applications range from designing highly specific DNA targeting tools and identifying potential off-target sites to predicting effector targets important in plant disease.


Trends in Cell Biology | 2013

TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA targeting proteins

Erin L. Doyle; Barry L. Stoddard; Daniel F. Voytas; Adam J. Bogdanove

Transcription activator-like (TAL) effectors are transcription factors injected into plant cells by pathogenic bacteria of the genus Xanthomonas. They function as virulence factors by activating host genes important for disease, or as avirulence factors by turning on genes that provide resistance. DNA-binding specificity is encoded by polymorphic repeats in each protein that correspond one-to-one with different nucleotides. This code has facilitated target identification and opened new avenues for engineering disease resistance. It has also enabled TAL effector customization for targeted gene control, genome editing, and other applications. This article reviews the structural basis for TAL effector-DNA specificity, the impact of the TAL effector-DNA code on plant pathology and engineered resistance, and recent accomplishments and future challenges in TAL effector-based DNA targeting.


New Phytologist | 2012

Addition of transcription activator‐like effector binding sites to a pathogen strain‐specific rice bacterial blight resistance gene makes it effective against additional strains and against bacterial leaf streak

Aaron W. Hummel; Erin L. Doyle; Adam J. Bogdanove

Xanthomonas transcription activator-like (TAL) effectors promote disease in plants by binding to and activating host susceptibility genes. Plants counter with TAL effector-activated executor resistance genes, which cause host cell death and block disease progression. We asked whether the functional specificity of an executor gene could be broadened by adding different TAL effector binding elements (EBEs) to it. We added six EBEs to the rice Xa27 gene, which confers resistance to strains of the bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) that deliver the TAL effector AvrXa27. The EBEs correspond to three other effectors from Xoo strain PXO99(A) and three from strain BLS256 of the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc). Stable integration into rice produced healthy lines exhibiting gene activation by each TAL effector, and resistance to PXO99(A) , a PXO99(A) derivative lacking AvrXa27, and BLS256, as well as two other Xoo and 10 Xoc strains virulent toward wildtype Xa27 plants. Transcripts initiated primarily at a common site. Sequences in the EBEs were found to occur nonrandomly in rice promoters, suggesting an overlap with endogenous regulatory sequences. Thus, executor gene specificity can be broadened by adding EBEs, but caution is warranted because of the possible coincident introduction of endogenous regulatory elements.


PLOS Pathogens | 2014

Code-Assisted Discovery of TAL Effector Targets in Bacterial Leaf Streak of Rice Reveals Contrast with Bacterial Blight and a Novel Susceptibility Gene

Raúl Andrés Cernadas; Erin L. Doyle; David O. Niño-Liu; Katherine Wilkins; Timothy J. Bancroft; Li Wang; Clarice L. Schmidt; Rico A. Caldo; Bing Yang; Frank F. White; Dan Nettleton; Roger P. Wise; Adam J. Bogdanove

Bacterial leaf streak of rice, caused by Xanthomonas oryzae pv. oryzicola (Xoc) is an increasingly important yield constraint in this staple crop. A mesophyll colonizer, Xoc differs from X. oryzae pv. oryzae (Xoo), which invades xylem to cause bacterial blight of rice. Both produce multiple distinct TAL effectors, type III-delivered proteins that transactivate effector-specific host genes. A TAL effector finds its target(s) via a partially degenerate code whereby the modular effector amino acid sequence identifies nucleotide sequences to which the protein binds. Virulence contributions of some Xoo TAL effectors have been shown, and their relevant targets, susceptibility (S) genes, identified, but the role of TAL effectors in leaf streak is uncharacterized. We used host transcript profiling to compare leaf streak to blight and to probe functions of Xoc TAL effectors. We found that Xoc and Xoo induce almost completely different host transcriptional changes. Roughly one in three genes upregulated by the pathogens is preceded by a candidate TAL effector binding element. Experimental analysis of the 44 such genes predicted to be Xoc TAL effector targets verified nearly half, and identified most others as false predictions. None of the Xoc targets is a known bacterial blight S gene. Mutational analysis revealed that Tal2g, which activates two genes, contributes to lesion expansion and bacterial exudation. Use of designer TAL effectors discriminated a sulfate transporter gene as the S gene. Across all targets, basal expression tended to be higher than genome-average, and induction moderate. Finally, machine learning applied to real vs. falsely predicted targets yielded a classifier that recalled 92% of the real targets with 88% precision, providing a tool for better target prediction in the future. Our study expands the number of known TAL effector targets, identifies a new class of S gene, and improves our ability to predict functional targeting.


PLOS ONE | 2013

TAL Effector Specificity for base 0 of the DNA Target Is Altered in a Complex, Effector- and Assay-Dependent Manner by Substitutions for the Tryptophan in Cryptic Repeat –1

Erin L. Doyle; Aaron W. Hummel; Zachary L. Demorest; Colby G. Starker; Daniel F. Voytas; Philip Bradley; Adam J. Bogdanove

TAL effectors are re-targetable transcription factors used for tailored gene regulation and, as TAL effector-nuclease fusions (TALENs), for genome engineering. Their hallmark feature is a customizable central string of polymorphic amino acid repeats that interact one-to-one with individual DNA bases to specify the target. Sequences targeted by TAL effector repeats in nature are nearly all directly preceded by a thymine (T) that is required for maximal activity, and target sites for custom TAL effector constructs have typically been selected with this constraint. Multiple crystal structures suggest that this requirement for T at base 0 is encoded by a tryptophan residue (W232) in a cryptic repeat N-terminal to the central repeats that exhibits energetically favorable van der Waals contacts with the T. We generated variants based on TAL effector PthXo1 with all single amino acid substitutions for W232. In a transcriptional activation assay, many substitutions altered or relaxed the specificity for T and a few were as active as wild type. Some showed higher activity. However, when replicated in a different TAL effector, the effects of the substitutions differed. Further, the effects differed when tested in the context of a TALEN in a DNA cleavage assay, and in a TAL effector-DNA binding assay. Substitution of the N-terminal region of the PthXo1 construct with that of one of the TAL effector-like proteins of Ralstonia solanacearum, which have arginine in place of the tryptophan, resulted in specificity for guanine as the 5’ base but low activity, and several substitutions for the arginine, including tryptophan, destroyed activity altogether. Thus, the effects on specificity and activity generated by substitutions at the W232 (or equivalent) position are complex and context dependent. Generating TAL effector scaffolds with high activity that robustly accommodate sites without a T at position 0 may require larger scale re-engineering.


Molecular Plant | 2017

TAL Effectors Drive Transcription Bidirectionally in Plants

Li Wang; Fabio C. Rinaldi; Pallavi Singh; Erin L. Doyle; Zoe E. Dubrow; Tuan Tu Tran; Alvaro L. Pérez-Quintero; Boris Szurek; Adam J. Bogdanove

TAL effectors delivered by phytopathogenic Xanthomonas species are DNA-sequence-specific transcriptional activators of host susceptibility genes and sometimes resistance genes. The modularity of DNA recognition by TAL effectors makes them important also as tools for gene targeting and genome editing. Effector binding elements (EBEs) recognized by native TAL effectors in plants have been identified only on the forward strand of target promoters. Here, we demonstrate that TAL effectors can drive plant transcription from EBEs on either strand and in both directions. Furthermore, we show that a native TAL effector from Xanthomonas oryzae pv. oryzicola drives expression of a target with an EBE on each strand of its promoter. By inserting that promoter and derivatives between two reporter genes oriented head to head, we show that the TAL effector drives expression from either EBE in the respective orientations, and that activity at the reverse-strand EBE also potentiates forward transcription driven by activity at the forward-strand EBE. Our results reveal new modes of action for TAL effectors, suggesting the possibility of yet unrecognized targets important in plant disease, expanding the search space for off-targets of custom TAL effectors, and highlighting the potential of TAL effectors for probing fundamental aspects of plant transcription.


Molecular Plant-microbe Interactions | 2017

daTALbase: a database for genomic and transcriptomic data related to TAL effectors.

Alvaro L. Pérez-Quintero; Léo Lamy; Carlos Zarate; Sébastien Cunnac; Erin L. Doyle; Adam J. Bogdanove; Boris Szurek; Alexis Dereeper

Transcription activator-like effectors (TALEs) are proteins found in the genus Xanthomonas of phytopathogenic bacteria. These proteins enter the nucleus of cells in the host plant and can induce the expression of susceptibility genes (S genes), triggering disease. TALEs bind the promoter region of S genes following a specific code, which allows the prediction of binding sites based on TALEs amino acid sequences. New candidate S genes can then be discovered by finding the intersection between genes induced in the presence of TALEs and genes containing predicted effector binding elements. By contrasting differential expression data and binding site predictions across different datasets, patterns of TALE diversification or convergence may be unveiled, but this requires the seamless integration of different genomic and transcriptomic data. With this in mind, we present daTALbase, a curated relational database that integrates TALE-related data including bacterial TALE sequences, plant promoter sequences, predicted TALE binding sites, transcriptomic data of host plants in response to TALE-harboring bacteria, and other associated data. The database can be explored to uncover new candidate S genes as well as to study variation in TALE repertories and their corresponding targets. The first version of the database here presented includes data for Oryza sp.-Xanthomonas pv. oryzae interactions. Future versions of the database will incorporate information for other pathosystems involving TALEs.


Journal of Microbiology & Biology Education | 2018

Finding Some Good in an Invasive Species: Introduction and Assessment of a Novel CURE to Improve Experimental Design in Undergraduate Biology Classrooms †

Ramesh Laungani; Colby Tanner; Tessa Durham Brooks; Barbara Clement; Melissa Clouse; Erin L. Doyle; Scott Dworak; Brad Elder; Kate Marley; Brett Schofield

Reports such as Vision and Change in Undergraduate Biology Education call for integration of course-based undergraduate research experiences (CUREs) into biology curricula and less emphasis on “cookbook” laboratories. CUREs, often characterized by a single open-ended research question, allow students to develop hypotheses, design experiments, and collaborate with peers. Conversely, “cookbook” labs incentivize task completion and have pre-determined experimental outcomes. While research comparing CUREs and “cookbook” labs is growing, there are fewer comparisons among CUREs. Here, we present a novel CURE built around an invasive grass, Bromus inermis. We evaluated this CURE’s effectiveness in improving students’ understanding of the Vision and Change competency relating to the application of the scientific process through development and testing of hypotheses. We did so by comparing changes in pre- and posttest scores on the Experimental Design Ability Test (EDAT) between Brome CURE students and students in a concurrent CURE, SEA-PHAGES. While students in both CUREs showed improvements at the end of the semester, Brome CURE students showed a greater increase in EDAT scores than did SEA-PHAGES CURE students. Additionally, Brome CURE students had significantly higher gains in 6 of the 10 EDAT criteria. We conclude that the Brome CURE is an effective ecological parallel to the SEA-PHAGES CURE and can help students gain a meaningful understanding of Vision and Change competencies. Journal of Microbiology & Biology Education

Collaboration


Dive into the Erin L. Doyle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomas Cermak

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikunj V. Somia

University of Electronic Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Yong Zhang

University of Electronic Science and Technology of China

View shared research outputs
Researchain Logo
Decentralizing Knowledge