Erin M. Dodd
California Department of Fish and Wildlife
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erin M. Dodd.
International Journal for Parasitology | 2002
Melissa A. Miller; Ian A. Gardner; C. Kreuder; D. Paradies; K. Worcester; David A. Jessup; Erin M. Dodd; Michael D. Harris; Jack A. Ames; Andrea E. Packham; Patricia A. Conrad
The association among anthropogenic environmental disturbance, pathogen pollution and the emergence of infectious diseases in wildlife has been postulated, but not always well supported by epidemiologic data. Specific evidence of coastal contamination of the marine ecosystem with the zoonotic protozoan parasite, Toxoplasma gondii, and extensive infection of southern sea otters (Enhydra lutris nereis) along the California coast was documented by this study. To investigate the extent of exposure and factors contributing to the apparent emergence of T. gondii in southern sea otters, we compiled environmental, demographic and serological data from 223 live and dead sea otters examined between 1997 and 2001. The T. gondii seroprevalence was 42% (49/116) for live otters, and 62% (66/107) for dead otters. Demographic and environmental data were examined for associations with T. gondii seropositivity, with the ultimate goal of identifying spatial clusters and demographic and environmental risk factors for T. gondii infection. Spatial analysis revealed clusters of T. gondii-seropositive sea otters at two locations along the coast, and one site with lower than expected T. gondii seroprevalence. Risk factors that were positively associated with T. gondii seropositivity in logistic regression analysis included male gender, older age and otters sampled from the Morro Bay region of California. Most importantly, otters sampled near areas of maximal freshwater runoff were approximately three times more likely to be seropositive to T. gondii than otters sampled in areas of low flow. No association was found between seropositivity to T. gondii and human population density or exposure to sewage. This study provides evidence implicating land-based surface runoff as a source of T. gondii infection for marine mammals, specifically sea otters, and provides a convincing illustration of pathogen pollution in the marine ecosystem.
Veterinary Research | 2010
Melissa A. Miller; Barbara A. Byrne; Spencer S. Jang; Erin M. Dodd; Elene Dorfmeier; Michael D. Harris; Jack A. Ames; David Paradies; Karen Worcester; David A. Jessup; Woutrina A. Miller
Although protected for nearly a century, California’s sea otters have been slow to recover, in part due to exposure to fecally-associated protozoal pathogens like Toxoplasma gondii and Sarcocystis neurona. However, potential impacts from exposure to fecal bacteria have not been systematically explored. Using selective media, we examined feces from live and dead sea otters from California for specific enteric bacterial pathogens (Campylobacter, Salmonella, Clostridium perfringens, C. difficile and Escherichia coli O157:H7), and pathogens endemic to the marine environment (Vibrio cholerae, V. parahaemolyticus and Plesiomonas shigelloides). We evaluated statistical associations between detection of these pathogens in otter feces and demographic or environmental risk factors for otter exposure, and found that dead otters were more likely to test positive for C. perfringens, Campylobacter and V. parahaemolyticus than were live otters. Otters from more urbanized coastlines and areas with high freshwater runoff (near outflows of rivers or streams) were more likely to test positive for one or more of these bacterial pathogens. Other risk factors for bacterial detection in otters included male gender and fecal samples collected during the rainy season when surface runoff is maximal. Similar risk factors were reported in prior studies of pathogen exposure for California otters and their invertebrate prey, suggesting that land-sea transfer and/or facilitation of pathogen survival in degraded coastal marine habitat may be impacting sea otter recovery. Because otters and humans share many of the same foods, our findings may also have implications for human health.
Journal of Wildlife Diseases | 2015
Sara E. Huckabone; Frances M. D. Gulland; Suzanne M. Johnson; Kathleen M. Colegrove; Erin M. Dodd; Demosthenes Pappagianis; Robin C. Dunkin; David R. Casper; Erin L. Carlson; Jane E. Sykes; Weiland Meyer; Melissa A. Miller
Abstract A wide range of systemic mycoses have been reported from captive and wild marine mammals from North America. Examples include regionally endemic pathogens such as Coccidioides and Blastomyces spp., and novel pathogens like Cryptococcus gattii, which appear may have been introduced to North America by humans. Stranding and necropsy data were analyzed from three marine mammal stranding and response facilities on the central California coast to assess the prevalence, host demographics, and lesion distribution of systemic mycoses affecting locally endemic marine mammals. Between 1 January 1998 and 30 June 2012, >7,000 stranded marine mammals were necropsied at the three facilities. Necropsy and histopathology records were reviewed to identify cases of locally invasive or systemic mycoses and determine the nature and distribution of fungal lesions. Forty-one animals (0.6%) exhibited cytological, culture- or histologically confirmed locally invasive or systemic mycoses: 36 had coccidioidomycosis, two had zygomycosis, two had cryptococcosis, and one was systemically infected with Scedosporium apiospermum (an Ascomycota). Infected animals included 18 California sea lions (Zalophus californianus), 20 southern sea otters (Enhydra lutris nereis), two Pacific harbor seals (Phoca vitulina richardsi), one Dalls porpoise (Phocoenoides dalli), and one northern elephant seal (Mirounga angustirostris). Coccidioidomycosis was reported from 15 sea lions, 20 sea otters, and one harbor seal, confirming that Coccidioides spp. is the most common pathogen causing systemic mycosis in marine mammals stranding along the central California coast. We also report the first confirmation of C. gattii infection in a wild marine mammal from California and the first report of coccidioidomycosis in a wild harbor seal. Awareness of these pathogenic fungi during clinical care and postmortem examination is an important part of marine mammal population health surveillance and human health protection. Temporal–spatial overlap may be observed for pathogenic mycoses infecting coastal marine mammals and adjacent human populations.
Journal of Wildlife Diseases | 2010
David A. Jessup; Christine K. Johnson; James A. Estes; Daphne Carlson-Bremer; Walter M. Jarman; Stacey Reese; Erin M. Dodd; M. Tim Tinker; Michael H. Ziccardi
As part of tagging and ecologic research efforts in 1997 and 1998, apparently healthy sea otters of four age-sex classes in six locations in Alaska and three in California were sampled for persistent organic pollutants (POPs) and other chemicals of ecologic or environmental concern (COECs). Published techniques for the detection of POPs (specifically Σpolychlorinated biphenyls [PCBs], ΣDDTs, Σhexachlorocyclohexanes [HCHs], Σpolycyclic aromatic hydrocarbons [PAHs], Σchlordanes [CHLs], hexachlorobenzene [HCB], dieldrin, and mirex) in the tissue of dead otters were modified for use with serum from live sea otters. Toxic equivalencies (TEQs) were calculated for POPs with proven bioactivity. Strong location effects were seen for most POPs and COECs; sea otters in California generally showed higher mean concentrations than those in Alaska. Differences in contaminant concentrations were detected among age and sex classes, with high levels frequently observed in subadults. Very high levels of ΣDDT were detected in male sea otters in Elkhorn Slough, California, where strong freshwater outflow from agricultural areas occurs seasonally. All contaminants except mirex differed among Alaskan locations; only ΣDDT, HCB, and chlorpyrifos differed within California. High levels of ΣPCB (particularly larger, more persistent congeners) were detected at two locations in Alaska where associations between elevated PCBs and military activity have been established, while higher PCB levels were found at all three locations in California where no point source of PCBs has been identified. Although POP and COEC concentrations in blood may be less likely to reflect total body burden, concentrations in blood of healthy animals may be more biologically relevant and less influenced by state of nutrition or perimortem factors than other tissues routinely sampled.
Journal of Wildlife Diseases | 2016
Georgina Bartlett; Woutrina A. Smith; Clare Dominik; Francesca Batac; Erin M. Dodd; Barbara A. Byrne; Spencer S. Jang; David A. Jessup; Julian Chantrey; Melissa A. Miller
Abstract Recent studies have implicated beta-hemolytic streptococci as opportunistic pathogens of marine mammals, including southern sea otters (Enhydra lutris nereis), but little is known about their prevalence or pathophysiology. Herein, we focus on risk factors for sea otter infection by a single beta-hemolytic streptococcal species, Streptococcus phocae. Streptococcus phocae was first identified as a marine mammal pathogen in 1994, and the first report in southern sea otters was in 2009. Its broad host range encompasses fish, pinnipeds, cetaceans, and mustelids, with S. phocae now recognized as an important pathogen of marine species worldwide. We assessed risk factors and lesion patterns for S. phocae infection in southern sea otters. Using archival necropsy data, S. phocae prevalence was 40.5% in fresh dead otters examined 2004–10. Skin trauma of any type was identified as a significant risk factor for S. phocae infection. The risk of infection was similar regardless of the cause and relative severity of skin trauma, including mating or fight wounds, shark bite, and anthropogenic trauma. Streptococcus phocae–infected sea otters were also more likely to present with abscesses or bacterial septicemia. Our findings highlight the importance of S. phocae as an opportunistic pathogen of sea otters and suggest that the most likely portal of entry is damaged skin. Even tiny skin breaks appear to facilitate bacterial colonization, invasion, abscess formation, and systemic spread. Our data provide important insights for management and care of marine species.
Journal of Wildlife Diseases | 2016
Sarah M. Chinn; Melissa A. Miller; M. Tim Tinker; Michelle M. Staedler; Francesca Batac; Erin M. Dodd; Laird A. Henkel
Abstract Sea otters (Enhydra lutris) have exceptionally high energetic requirements, which nearly double during lactation and pup care. Thus, females are extremely vulnerable to caloric insufficiency. Despite a number of compensatory strategies, the metabolic challenge of reproduction culminates in numerous maternal deaths annually. Massive depletion of energy reserves results in a case presentation that we define as end-lactation syndrome (ELS), characterized by moderate to severe emaciation not attributable to a concurrent, independent disease process in females dying during late pup care or postweaning. We compiled detailed data for 108 adult female southern sea otters (Enhydra lutris nereis) examined postmortem that stranded in California, US, 2005–12, and assessed pathology, reproductive status, and the location and timing of stranding. We introduce simple, grossly apparent, standardized physical criteria to assess reproductive stage for female sea otters. We also describe ELS, examine associated risk factors, and highlight female life history strategies that likely optimize reproduction and survival. Our data suggest that females can reset both the timing and energetic demands of reproduction through fetal loss, pup abandonment, or early weaning as part of specific physiologic checkpoints during each reproductive cycle. Females appear to preload nutritionally during delayed implantation and gestation to increase fitness and reproductive success. We found that ELS was a major cause of death, affecting 56% of enrolled adult females. Peak ELS prevalence occurred in late spring, possibly reflecting the population trend toward fall/winter pupping. Increasing age and number of pregnancies were associated with a higher risk of ELS. Although the proportion of ELS females was highest in areas with dense sea otter populations, cases were recovered throughout the range, suggesting that death from ELS is associated with, but not solely caused by, population resource limitation.
Journal of Wildlife Diseases | 2015
Terry Fei Fan Ng; Melissa A. Miller; Nikola O. Kondov; Erin M. Dodd; Francesca Batac; Mike Manzer; Sarah Ives; Jeremiah T. Saliki; Xutao Deng; Eric Delwart
Abstract The southern sea otter (Enhydra lutris nereis) is a threatened marine sentinel. During postmortem investigations of stranded sea otters from 2004 to 2013 in California, US, papillomas were detected in the oral cavity of at least seven otters via necropsy and histopathology. Next-generation sequencing of viral particles purified from a single papilloma revealed a novel papillomavirus, Enhydra lutris papillomavirus 1 (ElPV-1). The genome of ElPV-1 was obtained, representing the first fully sequenced viral genome from southern sea otters. Phylogenetic analysis of the entire L1 gene, as well as a concatenated protein identities plot of all papillomaviral genes revealed that ElPV-1 is a &lgr;-papillomavirus, related to a raccoon papillomavirus (Procyon lotor papillomavirus type 1) and a canine oral papillomavirus. Immunohistochemical staining, using a cross-reactive bovine papillomavirus antibody, suggested that ElPV-1 is present in intranuclear inclusions and intracytoplasmic keratin granules. Virus-infected cells were scattered throughout the stratum granulosum and stratum spinosum of the gingival and buccal papillomas. Using ElPV-1–specific PCR, we confirmed viral DNA in oral papillomas from all seven stranded sea otters, with identical L1 sequences. This virus is associated with the development of oral papillomatosis in southern sea otters.
Journal of Wildlife Diseases | 2017
Melissa A. Miller; Tristan L. Burgess; Erin M. Dodd; Jack C. Rhyan; Spencer S. Jang; Barbara A. Byrne; Frances M. D. Gulland; Michael J. Murray; Sharon Toy-Choutka; Patricia A. Conrad; Cara L. Field; Inga F. Sidor; Woutrina A. Smith
Abstract We characterize Brucella infection in a wild southern sea otter (Enhydra lutris nereis) with osteolytic lesions similar to those reported in other marine mammals and humans. This otter stranded twice along the central California coast, US over a 1-yr period and was handled extensively at two wildlife rehabilitation facilities, undergoing multiple surgeries and months of postsurgical care. Ultimately the otter was euthanized due to severe, progressive neurologic disease. Necropsy and postmortem radiographs revealed chronic, severe osteoarthritis spanning the proximal interphalangeal joint of the left hind fifth digit. Numerous coccobacilli within the joint were strongly positive on Brucella immunohistochemical labelling, and Brucella sp. was isolated in pure culture from this lesion. Sparse Brucella-immunopositive bacteria were also observed in the cytoplasm of a pulmonary vascular monocyte, and multifocal granulomas were observed in the spinal cord and liver on histopathology. Findings from biochemical characterization, 16S ribosomal DNA, and bp26 gene sequencing of the bacterial isolate were identical to those from marine-origin brucellae isolated from cetaceans and phocids. Prior reports document the zoonotic potential of the marine brucellae. Isolation of Brucella sp. from a stranded sea otter highlights the importance of wearing personal protective equipment when handling sea otters and other marine mammals as part of wildlife conservation and rehabilitation efforts.
Journal of Wildlife Diseases | 2017
Juliana D. Siqueira; Terry F. Ng; Melissa A. Miller; Linlin Li; Xutao Deng; Erin M. Dodd; Francesca Batac; Eric Delwart
Abstract Over the past century, the southern sea otter (SSO; Enhydra lutris nereis) population has been slowly recovering from near extinction due to overharvest. The SSO is a threatened subspecies under federal law and a fully protected species under California law, US. Through a multiagency collaborative program, stranded animals are rehabilitated and released, while deceased animals are necropsied and tissues are cryopreserved to facilitate scientific study. Here, we processed archival tissues to enrich particle-associated viral nucleic acids, which we randomly amplified and deeply sequenced to identify viral genomes through sequence similarities. Anelloviruses and endogenous retroviral sequences made up over 50% of observed viral sequences. Polyomavirus, parvovirus, and adenovirus sequences made up most of the remaining reads. We characterized and phylogenetically analyzed the full genome of sea otter polyomavirus 1 and the complete coding sequence of sea otter parvovirus 1 and found that the closest known viruses infect primates and domestic pigs (Sus scrofa domesticus), respectively. We tested archived tissues from 69 stranded SSO necropsied over 14 yr (2000–13) by PCR. Polyomavirus, parvovirus, and adenovirus infections were detected in 51, 61, and 29% of examined animals, respectively, with no significant increase in frequency over time, suggesting endemic infection. We found that 80% of tested SSO were infected with at least one of the three DNA viruses, whose tissue distribution we determined in 261 tissue samples. Parvovirus DNA was most frequently detected in mesenteric lymph node, polyomavirus DNA in spleen, and adenovirus DNA in multiple tissues (spleen, retropharyngeal and mesenteric lymph node, lung, and liver). This study describes the virome in tissues of a threatened species and shows that stranded SSO are frequently infected with multiple viruses, warranting future research to investigate associations between these infections and observed lesions.
International journal for parasitology. Parasites and wildlife | 2018
Risa Pesapane; Erin M. Dodd; Nadia Javeed; Melissa A. Miller; Janet E. Foley
Parasitism, particularly in concert with other sublethal stressors, may play an important, yet underappreciated role in morbidity and mortality of threatened species. During necropsy of southern sea otters (Enhydra lutra nereis) from California submitted to the Marine Wildlife Veterinary Care and Research Centers Sea Otter Necropsy Program between 1999 and 2017, pathologists occasionally observed nasopulmonary mites infesting the respiratory tracts. Infestation was sometimes accompanied by lesions reflective of mite-associated host tissue damage and respiratory illness. Our objectives were to estimate prevalence of nasopulmonary mites, determine the taxonomic identity of the observed mites, and create a DNA reference for these organisms in southern sea otters as an aid in population management. Using unique morphological characteristics discerned via light and scanning electron microscopy (SEM), we identified the mites as Halarachne halichoeri, a species typically associated with harbor seals (Phoca vitiluna). The 18S, 16S, 28S and ITS1-2 genetic regions were sequenced and submitted to GenBank. We observed H. halichoeri mites in 25.6% (95% CI 19.9–33.4%). of southern sea otters from a subset of necropsies performed between 2012 and 2017. This is the first documentation of H. halichoeri in southern sea otters and is suggestive of parasite exchange between sea otters and harbor seals.