Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jack A. Ames is active.

Publication


Featured researches published by Jack A. Ames.


International Journal for Parasitology | 2002

Coastal freshwater runoff is a risk factor for Toxoplasma gondii infection of southern sea otters (Enhydra lutris nereis)

Melissa A. Miller; Ian A. Gardner; C. Kreuder; D. Paradies; K. Worcester; David A. Jessup; Erin M. Dodd; Michael D. Harris; Jack A. Ames; Andrea E. Packham; Patricia A. Conrad

The association among anthropogenic environmental disturbance, pathogen pollution and the emergence of infectious diseases in wildlife has been postulated, but not always well supported by epidemiologic data. Specific evidence of coastal contamination of the marine ecosystem with the zoonotic protozoan parasite, Toxoplasma gondii, and extensive infection of southern sea otters (Enhydra lutris nereis) along the California coast was documented by this study. To investigate the extent of exposure and factors contributing to the apparent emergence of T. gondii in southern sea otters, we compiled environmental, demographic and serological data from 223 live and dead sea otters examined between 1997 and 2001. The T. gondii seroprevalence was 42% (49/116) for live otters, and 62% (66/107) for dead otters. Demographic and environmental data were examined for associations with T. gondii seropositivity, with the ultimate goal of identifying spatial clusters and demographic and environmental risk factors for T. gondii infection. Spatial analysis revealed clusters of T. gondii-seropositive sea otters at two locations along the coast, and one site with lower than expected T. gondii seroprevalence. Risk factors that were positively associated with T. gondii seropositivity in logistic regression analysis included male gender, older age and otters sampled from the Morro Bay region of California. Most importantly, otters sampled near areas of maximal freshwater runoff were approximately three times more likely to be seropositive to T. gondii than otters sampled in areas of low flow. No association was found between seropositivity to T. gondii and human population density or exposure to sewage. This study provides evidence implicating land-based surface runoff as a source of T. gondii infection for marine mammals, specifically sea otters, and provides a convincing illustration of pathogen pollution in the marine ecosystem.


Journal of Wildlife Diseases | 2003

PATTERNS OF MORTALITY IN SOUTHERN SEA OTTERS (ENHYDRA LUTRIS NEREIS) FROM 1998–2001

C. Kreuder; Melissa A. Miller; David A. Jessup; Linda J. Lowenstine; Michael D. Harris; Jack A. Ames; Tim E. Carpenter; Patricia A. Conrad; Jonna A. K. Mazet

Detailed postmortem examination of southern sea otters (Enhydra lutris nereis) found along the California (USA) coast has provided an exceptional opportunity to understand factors influencing survival in this threatened marine mammal species. In order to evaluate recent trends in causes of mortality, the demographic and geographic distribution of causes of death in freshly deceased beachcast sea otters necropsied from 1998–2001 were evaluated. Protozoal encephalitis, acanthocephalan-related disease, shark attack, and cardiac disease were identified as common causes of death in sea otters examined. While infection with acanthocephalan parasites was more likely to cause death in juvenile otters, Toxoplasma gondii encephalitis, shark attack, and cardiac disease were more common in prime-aged adult otters. Cardiac disease is a newly recognized cause of mortality in sea otters and T. gondii encephalitis was significantly associated with this condition. Otters with fatal shark bites were over three times more likely to have pre-existing T. gondii encephalitis suggesting that shark attack, which is a long-recognized source of mortality in otters, may be coupled with a recently recognized disease in otters. Spatial clusters of cause-specific mortality were detected for T. gondii encephalitis (in Estero Bay), acanthocephalan peritonitis (in southern Monterey Bay), and shark attack (from Santa Cruz to Point Año Nuevo). Diseases caused by parasites, bacteria, or fungi and diseases without a specified etiology were the primary cause of death in 63.8% of otters examined. Parasitic disease alone caused death in 38.1% of otters examined. This pattern of mortality, observed predominantly in juvenile and prime-aged adult southern sea otters, has negative implications for the overall health and recovery of this population.


International Journal for Parasitology | 2008

Type X Toxoplasma gondii in a wild mussel and terrestrial carnivores from coastal California: New linkages between terrestrial mammals, runoff and toxoplasmosis of sea otters

Melissa A. Miller; Woutrina A. Miller; Patricia A. Conrad; Erick R. James; Ann C. Melli; C.M. Leutenegger; H.A. Dabritz; Andrea E. Packham; D. Paradies; Michael D. Harris; Jack A. Ames; David A. Jessup; K. Worcester; Michael E. Grigg

Sea otters in California are commonly infected with Toxoplasma gondii. A unique Type X strain is responsible for 72% of otter infections, but its prevalence in terrestrial animals and marine invertebrates inhabiting the same area was unknown. Between 2000 and 2005, 45 terrestrial carnivores (lions, bobcats, domestic cats and foxes) and 1396 invertebrates (mussels, clams and worms) were screened for T. gondii using PCR and DNA sequencing to determine the phylogeographic distribution of T. gondii archetypal I, II, III and Type X genotypes. Marine bivalves have been shown to concentrate T. gondii oocysts in the laboratory, but a comprehensive survey of wild invertebrates has not been reported. A California mussel from an estuary draining into Monterey Bay was confirmed positive for Type X T. gondii by multilocus PCR and DNA sequencing at the B1 and SAG1 loci. This mussel was collected from nearshore marine waters just after the first significant rainfall event in the fall of 2002. Of 45 carnivores tested at the B1, SAG1, and GRA6 typing loci, 15 had PCR-confirmed T. gondii infection; 11 possessed alleles consistent with infection by archetypal Type I, II or III strains and 4 possessed alleles consistent with Type X T. gondii infection. No non-canonical alleles were identified. The four T. gondii strains with Type X alleles were identified from two mountain lions, a bobcat and a fox residing in coastal watersheds adjacent to sea otter habitat near Monterey Bay and Estero Bay. Confirmation of Type X T. gondii in coastal-dwelling felids, canids, a marine bivalve and nearshore-dwelling sea otters supports the hypotheses that feline faecal contamination is flowing from land to sea through surface runoff, and that otters can be infected with T. gondii via consumption of filter-feeding marine invertebrates.


Veterinary Research | 2010

Enteric bacterial pathogen detection in southern sea otters (Enhydra lutris nereis) is associated with coastal urbanization and freshwater runoff

Melissa A. Miller; Barbara A. Byrne; Spencer S. Jang; Erin M. Dodd; Elene Dorfmeier; Michael D. Harris; Jack A. Ames; David Paradies; Karen Worcester; David A. Jessup; Woutrina A. Miller

Although protected for nearly a century, California’s sea otters have been slow to recover, in part due to exposure to fecally-associated protozoal pathogens like Toxoplasma gondii and Sarcocystis neurona. However, potential impacts from exposure to fecal bacteria have not been systematically explored. Using selective media, we examined feces from live and dead sea otters from California for specific enteric bacterial pathogens (Campylobacter, Salmonella, Clostridium perfringens, C. difficile and Escherichia coli O157:H7), and pathogens endemic to the marine environment (Vibrio cholerae, V. parahaemolyticus and Plesiomonas shigelloides). We evaluated statistical associations between detection of these pathogens in otter feces and demographic or environmental risk factors for otter exposure, and found that dead otters were more likely to test positive for C. perfringens, Campylobacter and V. parahaemolyticus than were live otters. Otters from more urbanized coastlines and areas with high freshwater runoff (near outflows of rivers or streams) were more likely to test positive for one or more of these bacterial pathogens. Other risk factors for bacterial detection in otters included male gender and fecal samples collected during the rainy season when surface runoff is maximal. Similar risk factors were reported in prior studies of pathogen exposure for California otters and their invertebrate prey, suggesting that land-sea transfer and/or facilitation of pathogen survival in degraded coastal marine habitat may be impacting sea otter recovery. Because otters and humans share many of the same foods, our findings may also have implications for human health.


Microbial Ecology | 2006

Salmonella spp., Vibrio spp., Clostridium perfringens, and Plesiomonas shigelloides in Marine and Freshwater Invertebrates from Coastal California Ecosystems

Woutrina A. Miller; Melissa A. Miller; I. A. Gardner; E. R. Atwill; B. A. Byrne; S. Jang; Michael D. Harris; Jack A. Ames; David A. Jessup; D. Paradies; K. Worcester; A. Melli; Patricia A. Conrad

The coastal ecosystems of California are highly utilized by humans and animals, but the ecology of fecal bacteria at the land–sea interface is not well understood. This study evaluated the distribution of potentially pathogenic bacteria in invertebrates from linked marine, estuarine, and freshwater ecosystems in central California. A variety of filter-feeding clams, mussels, worms, and crab tissues were selectively cultured for Salmonella spp., Campylobacter spp., Escherichia coli-O157, Clostridium perfringens, Plesiomonas shigelloides, and Vibrio spp. A longitudinal study assessed environmental risk factors for detecting these bacterial species in sentinel mussel batches. Putative risk factors included mussel collection near higher risk areas for livestock or human sewage exposure, adjacent human population density, season, recent precipitation, water temperature, water type, bivalve type, and freshwater outflow exposure. Bacteria detected in invertebrates included Salmonella spp., C. perfringens, P. shigelloides, Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio alginolyticus. Overall, 80% of mussel batches were culture positive for at least one of the bacterial species, although the pathogens Campylobacter, E. coli-O157, and Salmonella were not detected. Many of the same bacterial species were also cultured from upstream estuarine and riverine invertebrates. Exposure to human sewage sources, recent precipitation, and water temperature were significant risk factors for bacterial detection in sentinel mussel batches. These findings are consistent with the hypothesis that filter-feeding invertebrates along the coast concentrate fecal bacteria flowing from land to sea and show that the relationships between anthropogenic effects on coastal ecosystems and the environmental niches of fecal bacteria are complex and dynamic.


Ecohealth | 2004

Southern Sea Otter as a Sentinel of Marine Ecosystem Health

David A. Jessup; Melissa A. Miller; Jack A. Ames; Mike Harris; Christine Kreuder; Patricia A. Conrad; Jonna A. K. Mazet

The southern sea otter (Enhydra lutris nereis) is listed as “threatened” under the Endangered Species Act (ESA) and is a “keystone species,” strongly influencing the abundance and diversity of the other species within its kelp forest ecosystem. This is accomplished primarily by preying upon urchins that eat the kelp stipe and holdfast, which can reduce a kelp forest to an urchin barren. Sea otters are very susceptible to marine pollutants such as petroleum, which may be directly toxic and/or alter their fur’s insulating properties. Sea otters are an excellent sentinel species. They eat approximately 25% of their body weight per day in shellfish and other invertebrates, and can concentrate and integrate chemical contaminants. In addition, they appear to be susceptible to a number of diseases and parasites that may have anthropogenic origins, and shellfish may serve as an intermediary for some of these infections. Many of the shellfish the otters eat are also harvested for human food. In their role as sentinels, sea otter health has implications for human health, economic sustainability of shellfisheries, as well as overall marine ecosystem health. The recent southern sea otter decline has been viewed with some alarm by conservationists and, indeed, recovery seems a long way off. High mortality rather than depressed recruitment appears to underlie the decline. A good deal of debate has centered on the role of infectious diseases and parasites, exposure to contaminants, nutrition and prey availability, net and pot fishery interactions, and other sources of mortality. Current research is being done related to major classes of mortality, various types of pollutants and some specific organisms causing southern sea otter mortality, and their implications for marine ecosystem health and sustainability.


Marine Mammal Science | 2003

CAUSES OF MORTALITY IN CALIFORNIA SEA OTTERS DURING PERIODS OF POPULATION GROWTH AND DECLINE

James A. Estes; Brian B. Hatfield; Katherine Ralls; Jack A. Ames


International Journal for Parasitology | 2005

New genotypes and factors associated with Cryptosporidium detection in mussels (Mytilus spp.) along the California coast.

Woutrina A. Miller; Melissa A. Miller; Ian A. Gardner; Edward R. Atwill; Michael D. Harris; Jack A. Ames; David A. Jessup; Ann C. Melli; D. Paradies; K. Worcester; P. Olin; Nicole M. Barnes; Patricia A. Conrad


Marine Mammal Science | 2016

Dramatic increase in sea otter mortality from white sharks in California

M. Tim Tinker; Brian B. Hatfield; Michael D. Harris; Jack A. Ames


Endangered Species Research | 2011

Sea otter mortality in fish and shellfish traps: estimating potential impacts and exploring possible solutions

Brian B. Hatfield; Jack A. Ames; James A. Estes; M. Tim Tinker; Andrew B. Johnson; Michelle Staedler; Michael D. Harris

Collaboration


Dive into the Jack A. Ames's collaboration.

Top Co-Authors

Avatar

Michael D. Harris

California Department of Fish and Wildlife

View shared research outputs
Top Co-Authors

Avatar

David A. Jessup

California Department of Fish and Wildlife

View shared research outputs
Top Co-Authors

Avatar

Melissa A. Miller

California Department of Fish and Wildlife

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian B. Hatfield

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Tim Tinker

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann C. Melli

University of California

View shared research outputs
Top Co-Authors

Avatar

Erin M. Dodd

California Department of Fish and Wildlife

View shared research outputs
Researchain Logo
Decentralizing Knowledge