Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erina Hara is active.

Publication


Featured researches published by Erina Hara.


PLOS ONE | 2008

Molecular mapping of movement-associated areas in the avian brain: a motor theory for vocal learning origin

Gesa Feenders; Miriam Liedvogel; Miriam V. Rivas; Manuela Zapka; Haruhito Horita; Erina Hara; Kazuhiro Wada; Henrik Mouritsen; Erich D. Jarvis

Vocal learning is a critical behavioral substrate for spoken human language. It is a rare trait found in three distantly related groups of birds-songbirds, hummingbirds, and parrots. These avian groups have remarkably similar systems of cerebral vocal nuclei for the control of learned vocalizations that are not found in their more closely related vocal non-learning relatives. These findings led to the hypothesis that brain pathways for vocal learning in different groups evolved independently from a common ancestor but under pre-existing constraints. Here, we suggest one constraint, a pre-existing system for movement control. Using behavioral molecular mapping, we discovered that in songbirds, parrots, and hummingbirds, all cerebral vocal learning nuclei are adjacent to discrete brain areas active during limb and body movements. Similar to the relationships between vocal nuclei activation and singing, activation in the adjacent areas correlated with the amount of movement performed and was independent of auditory and visual input. These same movement-associated brain areas were also present in female songbirds that do not learn vocalizations and have atrophied cerebral vocal nuclei, and in ring doves that are vocal non-learners and do not have cerebral vocal nuclei. A compilation of previous neural tracing experiments in songbirds suggests that the movement-associated areas are connected in a network that is in parallel with the adjacent vocal learning system. This study is the first global mapping that we are aware for movement-associated areas of the avian cerebrum and it indicates that brain systems that control vocal learning in distantly related birds are directly adjacent to brain systems involved in movement control. Based upon these findings, we propose a motor theory for the origin of vocal learning, this being that the brain areas specialized for vocal learning in vocal learners evolved as a specialization of a pre-existing motor pathway that controls movement.


Science | 2014

Convergent transcriptional specializations in the brains of humans and song-learning birds.

Andreas R. Pfenning; Erina Hara; Osceola Whitney; Miriam V. Rivas; Rui Wang; Petra L. Roulhac; Jason T. Howard; Morgan Wirthlin; Peter V. Lovell; Ganeshkumar Ganapathy; Jacquelyn Mouncastle; M. Arthur Moseley; J. Will Thompson; Erik J. Soderblom; Atsushi Iriki; Masaki Kato; M. Thomas P. Gilbert; Guojie Zhang; Trygve E. Bakken; Angie Bongaarts; Amy Bernard; Ed Lein; Claudio V. Mello; Alexander J. Hartemink; Erich D. Jarvis

INTRODUCTION Vocal learning, the ability to imitate sounds, is a trait that has undergone convergent evolution in several lineages of birds and mammals, including song-learning birds and humans. This behavior requires cortical and striatal vocal brain regions, which form unique connections in vocal-learning species. These regions have been found to have specialized gene expression within some species, but the patterns of specialization across vocal-learning bird and mammal species have not been systematically explored. Identifying molecular brain similarities across species. Brain region gene expression specializations were hierarchically organized into specialization trees of each species (blue lines), including for circuits that control learned vocalizations (highlighted green, purple, and orange regions). A set of comparative genomic algorithms found the most similarly specialized regions between songbird and human (orange lines), some of which are convergently evolved. RATIONALE The sequencing of genomes representing all major vocal-learning and vocal-nonlearning avian lineages has allowed us to develop the genomic tools to measure anatomical gene expression across species. Here, we asked whether behavioral and anatomical convergence is associated with gene expression convergence in the brains of vocal-learning birds and humans. RESULTS We developed a computational approach that discovers homologous and convergent specialized anatomical gene expression profiles. This includes generating hierarchically organized gene expression specialization trees for each species and a dynamic programming algorithm that finds the optimal alignment between species brain trees. We applied this approach to brain region gene expression databases of thousands of samples and genes that we and others generated from multiple species, including humans and song-learning birds (songbird, parrot, and hummingbird) as well as vocal-nonlearning nonhuman primates (macaque) and birds (dove and quail). Our results confirmed the recently revised understanding of the relationships between avian and mammalian brains. We further found that songbird Area X, a striatal region necessary for vocal learning, was most similar to a part of the human striatum activated during speech production. The RA (robust nucleus of the arcopallium) analog of song-learning birds, necessary for song production, was most similar to laryngeal motor cortex regions in humans that control speech production. More than 50 genes contributed to their convergent specialization and were enriched in motor control and neural connectivity functions. These patterns were not found in vocal nonlearners, but songbird RA was similar to layer 5 of primate motor cortex for another set of genes, supporting previous hypotheses about the similarity of these cell types between bird and mammal brains. CONCLUSION Our approach can accurately and quantitatively identify functionally and molecularly analogous brain regions between species separated by as much as 310 million years from a common ancestor. We were able to identify analogous brain regions for song and speech between birds and humans, and broader homologous brain regions in which these specialized song and speech regions are located, for tens to hundreds of genes. These genes now serve as candidates involved in developing and maintaining the unique connectivity and functional properties of vocal-learning brain circuits shared across species. The finding that convergent neural circuits for vocal learning are accompanied by convergent molecular changes of multiple genes in species separated by millions of years from a common ancestor indicates that brain circuits for complex traits may have limited ways in which they could have evolved from that ancestor. Song-learning birds and humans share independently evolved similarities in brain pathways for vocal learning that are essential for song and speech and are not found in most other species. Comparisons of brain transcriptomes of song-learning birds and humans relative to vocal nonlearners identified convergent gene expression specializations in specific song and speech brain regions of avian vocal learners and humans. The strongest shared profiles relate bird motor and striatal song-learning nuclei, respectively, with human laryngeal motor cortex and parts of the striatum that control speech production and learning. Most of the associated genes function in motor control and brain connectivity. Thus, convergent behavior and neural connectivity for a complex trait are associated with convergent specialized expression of multiple genes.


European Journal of Neuroscience | 2007

Role of the midbrain dopaminergic system in modulation of vocal brain activation by social context

Erina Hara; Lubica Kubikova; Neal A. Hessler; Erich D. Jarvis

In a well‐studied model of social behaviour, male zebra finches sing directed song to court females and undirected song, used possibly for practice or advertisement. Although the two song types are similar, the level of neural activity and expression of the immediate early gene egr‐1 are higher during undirected than during directed singing in the lateral part of the basal ganglia song nucleus AreaX (LAreaX) and its efferent pallial song nuclei lateral magnocellular nucleus of the anterior nidopallium (LMAN) and the robust nucleus of the arcopallium (RA). As social interactions are dependent on brain motivation systems, here we test the hypothesis that the midbrain ventral tegmental area–substantia nigra pars compacta (VTA–SNc) complex, which provides a strong dopaminergic input to LAreaX, is a source of this modulation. Using egr‐1 expression, we show that GABAergic interneurons in VTA–SNc are more active during directed courtship singing than during undirected singing. We also found that unilateral removal of VTA–SNc input reduced singing‐dependent gene expression in ipsilateral LAreaX during both social contexts but it did not eliminate social context differences in LAreaX. In contrast, such lesions reduced and eliminated the social context differences in efferent nuclei LMAN and RA, respectively. These results suggest that VTA–SNc is not solely responsible for the social context gene regulation in LAreaX, but that VTA–SNc input to LAreaX enhances the singing‐regulated gene expression in this nucleus and, either through LAreaX or through direct projections to LMAN and RA, VTA–SNc is necessary for context‐dependent gene regulation in these efferent nuclei.


The Journal of Comparative Neurology | 2013

Global view of the functional molecular organization of the avian cerebrum: mirror images and functional columns.

Erich D. Jarvis; Jing Yu; Miriam V. Rivas; Haruhito Horita; Gesa Feenders; Osceola Whitney; Syrus C. Jarvis; Electra R. Jarvis; Lubica Kubikova; Ana E.P. Puck; Connie Siang-Bakshi; Suzanne Martin; Michael McElroy; Erina Hara; Jason T. Howard; Andreas R. Pfenning; Henrik Mouritsen; Chun-Chun Chen; Kazuhiro Wada

Based on quantitative cluster analyses of 52 constitutively expressed or behaviorally regulated genes in 23 brain regions, we present a global view of telencephalic organization of birds. The patterns of constitutively expressed genes revealed a partial mirror image organization of three major cell populations that wrap above, around, and below the ventricle and adjacent lamina through the mesopallium. The patterns of behaviorally regulated genes revealed functional columns of activation across boundaries of these cell populations, reminiscent of columns through layers of the mammalian cortex. The avian functionally regulated columns were of two types: those above the ventricle and associated mesopallial lamina, formed by our revised dorsal mesopallium, hyperpallium, and intercalated hyperpallium; and those below the ventricle, formed by our revised ventral mesopallium, nidopallium, and intercalated nidopallium. Based on these findings and known connectivity, we propose that the avian pallium has four major cell populations similar to those in mammalian cortex and some parts of the amygdala: 1) a primary sensory input population (intercalated pallium); 2) a secondary intrapallial population (nidopallium/hyperpallium); 3) a tertiary intrapallial population (mesopallium); and 4) a quaternary output population (the arcopallium). Each population contributes portions to columns that control different sensory or motor systems. We suggest that this organization of cell groups forms by expansion of contiguous developmental cell domains that wrap around the lateral ventricle and its extension through the middle of the mesopallium. We believe that the position of the lateral ventricle and its associated mesopallium lamina has resulted in a conceptual barrier to recognizing related cell groups across its border, thereby confounding our understanding of homologies with mammals. J. Comp. Neurol. 521:3614–3665, 2013.


The Journal of Comparative Neurology | 2010

The dusp1 immediate early gene is regulated by natural stimuli predominantly in sensory input neurons.

Haruhito Horita; Kazuhiro Wada; Miriam V. Rivas; Erina Hara; Erich D. Jarvis

Many immediate early genes (IEGs) have activity‐dependent induction in a subset of brain subdivisions or neuron types. However, none have been reported yet with regulation specific to thalamic‐recipient sensory neurons of the telencephalon or in the thalamic sensory input neurons themselves. Here, we report the first such gene, dual specificity phosphatase 1 (dusp1). Dusp1 is an inactivator of mitogen‐activated protein kinase (MAPK), and MAPK activates expression of egr1, one of the most commonly studied IEGs, as determined in cultured cells. We found that in the brain of naturally behaving songbirds and other avian species, hearing song, seeing visual stimuli, or performing motor behavior caused high dusp1 upregulation, respectively, in auditory, visual, and somatosensory input cell populations of the thalamus and thalamic‐recipient sensory neurons of the telencephalic pallium, whereas high egr1 upregulation occurred only in subsequently connected secondary and tertiary sensory neuronal populations of these same pathways. Motor behavior did not induce high levels of dusp1 expression in the motor‐associated areas adjacent to song nuclei, where egr1 is upregulated in response to movement. Our analysis of dusp1 expression in mouse brain suggests similar regulation in the sensory input neurons of the thalamus and thalamic‐recipient layer IV and VI neurons of the cortex. These findings suggest that dusp1 has specialized regulation to sensory input neurons of the thalamus and telencephalon; they further suggest that this regulation may serve to attenuate stimulus‐induced expression of egr1 and other IEGs, leading to unique molecular properties of forebrain sensory input neurons. J. Comp. Neurol. 518:2873–2901, 2010.


The Journal of Comparative Neurology | 2015

Convergent differential regulation of SLIT-ROBO axon guidance genes in the brains of vocal learners

Rui Wang; Chun-Chun Chen; Erina Hara; Miriam V. Rivas; Petra L. Roulhac; Jason T. Howard; Mukta Chakraborty; Jean-Nicolas Audet; Erich D. Jarvis

Only a few distantly related mammals and birds have the trait of complex vocal learning, which is the ability to imitate novel sounds. This ability is critical for speech acquisition and production in humans, and is attributed to specialized forebrain vocal control circuits that have several unique connections relative to adjacent brain circuits. As a result, it has been hypothesized that there could exist convergent changes in genes involved in neural connectivity of vocal learning circuits. In support of this hypothesis, expanding on our related study (Pfenning et al. [2014] Science 346: 1256846), here we show that the forebrain part of this circuit that makes a relatively rare direct connection to brainstem vocal motor neurons in independent lineages of vocal learning birds (songbird, parrot, and hummingbird) has specialized regulation of axon guidance genes from the SLIT–ROBO molecular pathway. The SLIT1 ligand was differentially downregulated in the motor song output nucleus that makes the direct projection, whereas its receptor ROBO1 was developmentally upregulated during critical periods for vocal learning. Vocal nonlearning bird species and male mice, which have much more limited vocal plasticity and associated circuits, did not show comparable specialized regulation of SLIT–ROBO genes in their nonvocal motor cortical regions. These findings are consistent with SLIT and ROBO gene dysfunctions associated with autism, dyslexia, and speech sound language disorders and suggest that convergent evolution of vocal learning was associated with convergent changes in the SLIT–ROBO axon guidance pathway. J. Comp. Neurol. 523:892–906, 2015.


PLOS ONE | 2012

Convergent differential regulation of parvalbumin in the brains of vocal learners.

Erina Hara; Miriam V. Rivas; James M. Ward; Kazuo Okanoya; Erich D. Jarvis

Spoken language and learned song are complex communication behaviors found in only a few species, including humans and three groups of distantly related birds – songbirds, parrots, and hummingbirds. Despite their large phylogenetic distances, these vocal learners show convergent behaviors and associated brain pathways for vocal communication. However, it is not clear whether this behavioral and anatomical convergence is associated with molecular convergence. Here we used oligo microarrays to screen for genes differentially regulated in brain nuclei necessary for producing learned vocalizations relative to adjacent brain areas that control other behaviors in avian vocal learners versus vocal non-learners. A top candidate gene in our screen was a calcium-binding protein, parvalbumin (PV). In situ hybridization verification revealed that PV was expressed significantly higher throughout the song motor pathway, including brainstem vocal motor neurons relative to the surrounding brain regions of all distantly related avian vocal learners. This differential expression was specific to PV and vocal learners, as it was not found in avian vocal non-learners nor for control genes in learners and non-learners. Similar to the vocal learning birds, higher PV up-regulation was found in the brainstem tongue motor neurons used for speech production in humans relative to a non-human primate, macaques. These results suggest repeated convergent evolution of differential PV up-regulation in the brains of vocal learners separated by more than 65–300 million years from a common ancestor and that the specialized behaviors of learned song and speech may require extra calcium buffering and signaling.


General and Comparative Endocrinology | 2012

Sex and species differences in plasma testosterone and in counts of androgen receptor-positive cells in key brain regions of Sceloporus lizard species that differ in aggression

Diana K. Hews; Erina Hara; Maurice C. Anderson

We studied neuroendocrine correlates of aggression differences in adults of two Sceloporus lizard species. These species differ in the degree of sex difference in aggressive color signals (belly patches) and in aggression: Sceloporus undulatus (males blue, high aggression; females white, low aggression) and Sceloporus virgatus (both sexes white, lower aggression). We measured plasma testosterone and counted cells expressing androgen receptor-like immunoreactivity to the affinity-purified polyclonal AR antibody, PG-21, in three brain regions of breeding season adults. Male S. undulatus had the highest mean plasma testosterone and differed significantly from conspecific females. In contrast, there was no sex difference in plasma testosterone concentrations in S. virgatus. Male S. undulatus also had the highest mean number of AR-positive cells in the preoptic area: the sexes differed in S. undulatus but not in S. virgatus, and females of the two species did not differ. In the ventral medial hypothalamus, S. undulatus males had higher mean AR cell counts compared to females, but again there was no sex difference in S. virgatus. In the habenula, a control brain region, the sexes did not differ, and although the sex by species interaction significant was not significant, there was a trend (p=0.050) for S. virgatus to have higher mean AR cell counts than S. undulatus. Thus hypothalamic AR cell counts paralleled sex and species differences in aggression, as did mean plasma testosterone levels in these breeding-season animals.


Behavioral Ecology and Sociobiology | 2011

Field presentation of male secretions alters social display in Sceloporus virgatus but not S. undulatus lizards

Diana K. Hews; Priya Date; Erina Hara; Michael J. Castellano

Lizards have communicative displays involving primarily vision and chemicals, and recent work suggests trade-offs between these two modalities. In reptiles, little work assesses effects of conspecific chemicals on subsequent signaling behavior. Here, we studied responses to conspecific secretions in two Sceloporus species differing in visual signaling: male Sceloporus undulatus have blue abdominal patches used in aggressive territorial encounters, while Sceloporus virgatus males have evolutionarily lost the patches and have low rates of aggressive display. We measured behavior of free-ranging males following presentation of swabs with conspecific male chemicals from femoral glands and the cloaca, or of clean swabs. For male S. undulatus (blue), neither likelihoods nor rates of behavioral responses differed between swab treatments. In contrast, male S. virgatus (white) presented with secretions had significantly higher likelihood of performing head bob, push-up, and shudder displays, than males in control swab trials. Rates of behavior also differed for S. virgatus, with higher rates of push-up display and tongue flick in trials with conspecific chemicals, but rates of other displays, number of moves, and mean total distance moved did not differ between treatments. Male S. undulatus moved significantly greater distances than S. virgatus, independent of treatment. In sum, male S. virgatus responded to conspecific male chemicals by increasing their low rates of display behavior, whereas male S. undulatus did not alter their already high rates of display or movement following chemical exposure. Chemical signals may play a different role in social signaling in the species with the loss of the abdominal color signal.


Proceedings of the Royal Society of London B: Biological Sciences | 2009

Assessing visual requirements for social context-dependent activation of the songbird song system

Erina Hara; Lubica Kubikova; Neal A. Hessler; Erich D. Jarvis

Social context has been shown to have a profound influence on brain activation in a wide range of vertebrate species. Best studied in songbirds, when males sing undirected song, the level of neural activity and expression of immediate early genes (IEGs) in several song nuclei is dramatically higher or lower than when they sing directed song to other birds, particularly females. This differential social context-dependent activation is independent of auditory input and is not simply dependent on the motor act of singing. These findings suggested that the critical sensory modality driving social context-dependent differences in the brain could be visual cues. Here, we tested this hypothesis by examining IEG activation in song nuclei in hemispheres to which visual input was normal or blocked. We found that covering one eye blocked visually induced IEG expression throughout both contralateral visual pathways of the brain, and reduced activation of the contralateral ventral tegmental area, a non-visual midbrain motivation-related area affected by social context. However, blocking visual input had no effect on the social context-dependent activation of the contralateral song nuclei during female-directed singing. Our findings suggest that individual sensory modalities are not direct driving forces for the social context differences in song nuclei during singing. Rather, these social context differences in brain activation appear to depend more on the general sense that another individual is present.

Collaboration


Dive into the Erina Hara's collaboration.

Top Co-Authors

Avatar

Erich D. Jarvis

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neal A. Hessler

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Osceola Whitney

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Isabelle George

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy F. Wright

New Mexico State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge