Ermira Pazolli
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ermira Pazolli.
Cancer Research | 2009
Ermira Pazolli; Xianmin Luo; Sarah Brehm; Kelly Carbery; Jun Jae Chung; Julie L. Prior; Jason M. Doherty; Shadmehr Demehri; Lorena Salavaggione; David Piwnica-Worms; Sheila A. Stewart
Alterations in the tissue microenvironment collaborate with cell autonomous genetic changes to contribute to neoplastic progression. The importance of the microenvironment in neoplastic progression is underscored by studies showing that fibroblasts isolated from a tumor stimulate the growth of preneoplastic and neoplastic cells in xenograft models. Similarly, senescent fibroblasts promote preneoplastic cell growth in vitro and in vivo. Because senescent cells accumulate with age, their presence is hypothesized to facilitate preneoplastic cell growth and tumor formation in older individuals. To identify senescent stromal factors directly responsible for stimulating preneoplastic cell growth, we carried out whole-genome transcriptional profiling and compared senescent fibroblasts with their younger counterparts. We identified osteopontin (OPN) as one of the most highly elevated transcripts in senescent fibroblasts. Importantly, reduction of OPN protein levels by RNA interference did not affect senescence induction in fibroblasts; however, it dramatically reduced the growth-promoting activities of senescent fibroblasts in vitro and in vivo, showing that OPN is necessary for paracrine stimulation of preneoplastic cell growth. In addition, we found that recombinant OPN was sufficient to stimulate preneoplastic cell growth. Finally, we show that OPN is expressed in senescent stroma within preneoplastic lesions that arise following 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate treatment of mice, suggesting that stromal-derived OPN-mediated signaling events affect neoplastic progression.
Cancer Research | 2012
Ermira Pazolli; Elise Alspach; Agnieszka Milczarek; Julie L. Prior; David Piwnica-Worms; Sheila A. Stewart
Age is a major risk factor for the development of cancer. Senescent fibroblasts, which accumulate with age, secrete protumorigenic factors collectively referred to as the senescence-associated secretory phenotype (SASP). Here, we examined the molecular mechanisms that control SASP activation, focusing on the known SASP factor osteopontin (OPN). We found that expression of the canonical SASP members interleukin (IL)-6 and IL-8, but not OPN, were dependent upon a persistent DNA damage response (DDR) as evidenced by ATM and NF-κB activation. Treatment with several histone deacetylase (HDAC) inhibitors robustly activated SASP in the absence of DNA breaks, suggesting that DDR-dependent SASP activation occurs in response to chromatin remodeling rather than physical breaks in DNA. In the setting of HDAC inhibition, IL-6 and IL-8 expression remained dependent upon ATM and NF-κB, while OPN expression remained independent of these factors. Further analysis revealed that HDAC1 inhibition was sufficient to induce OPN expression, which is interesting given that loss of HDAC1 expression correlates with increased OPN expression within the stromal compartment of invasive breast cancers. Importantly, fibroblasts treated with HDAC inhibitors promoted tumor growth in vivo. Our findings therefore indicate that HDAC modulation plays an important role in stromal cell activation, with important implications for the use of HDAC inhibitors in the treatment of cancer.
Cancer Research | 2016
Hazel M. Weir; Robert Hugh Bradbury; Mandy Lawson; Alfred A. Rabow; David Buttar; Rowena Callis; Jon Owen Curwen; Camila de Almeida; Peter Ballard; Micheal Hulse; Craig S. Donald; Lyman Feron; Galith Karoutchi; Philip A. MacFaul; Thomas A. Moss; Richard A. Norman; Stuart E. Pearson; Michael Tonge; Gareth Davies; Graeme Walker; Zena Wilson; Rachel Rowlinson; Steve Powell; Claire Sadler; Graham Richmond; Brendon Ladd; Ermira Pazolli; Anne Marie Mazzola; Celina D'Cruz; Chris De Savi
Fulvestrant is an estrogen receptor (ER) antagonist administered to breast cancer patients by monthly intramuscular injection. Given its present limitations of dosing and route of administration, a more flexible orally available compound has been sought to pursue the potential benefits of this drug in patients with advanced metastatic disease. Here we report the identification and characterization of AZD9496, a nonsteroidal small-molecule inhibitor of ERα, which is a potent and selective antagonist and downregulator of ERα in vitro and in vivo in ER-positive models of breast cancer. Significant tumor growth inhibition was observed as low as 0.5 mg/kg dose in the estrogen-dependent MCF-7 xenograft model, where this effect was accompanied by a dose-dependent decrease in PR protein levels, demonstrating potent antagonist activity. Combining AZD9496 with PI3K pathway and CDK4/6 inhibitors led to further growth-inhibitory effects compared with monotherapy alone. Tumor regressions were also seen in a long-term estrogen-deprived breast model, where significant downregulation of ERα protein was observed. AZD9496 bound and downregulated clinically relevant ESR1 mutants in vitro and inhibited tumor growth in an ESR1-mutant patient-derived xenograft model that included a D538G mutation. Collectively, the pharmacologic evidence showed that AZD9496 is an oral, nonsteroidal, selective estrogen receptor antagonist and downregulator in ER(+) breast cells that could provide meaningful benefit to ER(+) breast cancer patients. AZD9496 is currently being evaluated in a phase I clinical trial. Cancer Res; 76(11); 3307-18. ©2016 AACR.
Molecular Cancer Research | 2011
Xianmin Luo; Megan K. Ruhland; Ermira Pazolli; Anne C. Lind; Sheila A. Stewart
Alterations in the microenvironment collaborate with cell autonomous mutations during the transformation process. Indeed, cancer-associated fibroblasts and senescent fibroblasts stimulate tumorigenesis in xenograft models. Because senescent fibroblasts accumulate with age, these findings suggest that they contribute to age-related increases in tumorigenesis. Previously we showed that senescence-associated stromal-derived osteopontin contributes to preneoplastic cell growth in vitro and in xenografts, suggesting that it impacts neoplastic progression. Analysis of fibroblasts within premalignant and malignant skin lesions ranging from solar/actinic keratosis to squamous cell carcinoma revealed they express osteopontin. Given the stromal expression of osteopontin, we investigated how osteopontin impacts preneoplastic cell growth. We show that osteopontin promotes preneoplastic keratinocyte cellular proliferation and cell survival through the CD44 cell receptor and activation of the MAPK pathway. These data suggest that stromal-derived osteopontin impacts tumorigenesis by stimulating preneoplastic cell proliferation thus allowing expansion of initiated cells in early lesions. Mol Cancer Res; 9(8); 1018–29. ©2011 AACR.
Nature Medicine | 2018
Michael Seiler; Akihide Yoshimi; Rachel Darman; Betty Chan; Gregg F. Keaney; Mike Thomas; Anant A. Agrawal; Benjamin Caleb; Alfredo Csibi; Eckley Sean; Peter Fekkes; Craig Karr; Virginia M. Klimek; George Lai; Linda Lee; P.V. Kumar; Stanley Chun-Wei Lee; Xiang Liu; Crystal MacKenzie; Carol Meeske; Yoshiharu Mizui; Eric Padron; Eunice Park; Ermira Pazolli; Shouyong Peng; Sudeep Prajapati; Justin Taylor; Teng Teng; John Q. Wang; Markus Warmuth
Genomic analyses of cancer have identified recurrent point mutations in the RNA splicing factor–encoding genes SF3B1, U2AF1, and SRSF2 that confer an alteration of function. Cancer cells bearing these mutations are preferentially dependent on wild-type (WT) spliceosome function, but clinically relevant means to therapeutically target the spliceosome do not currently exist. Here we describe an orally available modulator of the SF3b complex, H3B-8800, which potently and preferentially kills spliceosome-mutant epithelial and hematologic tumor cells. These killing effects of H3B-8800 are due to its direct interaction with the SF3b complex, as evidenced by loss of H3B-8800 activity in drug-resistant cells bearing mutations in genes encoding SF3b components. Although H3B-8800 modulates WT and mutant spliceosome activity, the preferential killing of spliceosome-mutant cells is due to retention of short, GC-rich introns, which are enriched for genes encoding spliceosome components. These data demonstrate the therapeutic potential of splicing modulation in spliceosome-mutant cancers.
Oncotarget | 2018
Kevin C. Flanagan; Elise Alspach; Ermira Pazolli; Shankar Parajuli; Qihao Ren; Laura L. Arthur; Roberto Tapia; Sheila A. Stewart
Tumorigenesis results from the convergence of cell autonomous mutations and corresponding stromal changes that promote tumor cell growth. Senescent cells, which secrete a plethora of pro-tumorigenic factors termed the senescence-associated secretory phenotype (SASP), play an important role in tumor formation. Investigation into SASP regulation revealed that many but not all SASP factors are subject to NF-kB and p38MAPK regulation. However, many pro-tumorigenic SASP factors, including osteopontin (OPN), are not responsive to these canonical pathways leaving the regulation of these factors an open question. We report that the transcription factor c-Myb regulates OPN, IL-6, and IL-8 in addition to 57 other SASP factors. The regulation of OPN is direct as c-Myb binds to the OPN promoter in response to senescence. Further, OPN is also regulated by the known SASP regulator C/EBPβ. In response to senescence, the full-length activating C/EBPβ isoform LAP2 increases binding to the OPN, IL-6, and IL-8 promoters. The importance of both c-Myb and C/EBPβ is underscored by our finding that the depletion of either factor reduces the ability of senescent fibroblasts to promote the growth of preneoplastic epithelial cells.
Cancer Research | 2017
Silvia Buonamici; Akihide Yoshimi; Mike Thomas; Michael Seiler; Betty Chan; Benjamin Caleb; Fred Csibi; Rachel Darman; Peter Fekkes; Craig Karr; Gregg F. Keaney; Amy Kim; Virginia M. Klimek; P.V. Kumar; Kaiko Kunii; Stanley Chun-Wei Lee; Xiang Liu; Crystal MacKenzie; Carol Meeske; Yoshiharu Mizui; Eric Padron; Eunice Park; Ermira Pazolli; Sudeep Prajapati; Nathalie Rioux; Justin Taylor; John Q. Wang; Markus Warmuth; Huilan Yao; Lihua Yu
Genomic characterization of hematologic and solid cancers has revealed recurrent somatic mutations affecting genes encoding the RNA splicing factors SF3B1, U2AF1, SRSF2 and ZRSR2. Recent data reveal that these mutations confer an alteration of function inducing aberrant splicing and rendering spliceosome mutant cells preferentially sensitive to splicing modulation compared with wildtype (WT) cells. Here we describe a novel orally bioavailable small molecule SF3B1 modulator identified through a medicinal chemistry effort aimed at optimizing compounds for preferential lethality in spliceosome mutant cells. H3B-8800 potently binds to WT or mutant SF3b complexes and modulates splicing in in vitro biochemical splicing assays and cellular pharmacodynamic assays. The selectivity of H3B-8800 was confirmed by observing lack of activity in cells expressing SF3B1R1074H, the SF3B1 mutation previously shown to confer resistance to other splicing modulators. Although H3B-8800 binds both WT and mutant SF3B1, it results in preferential lethality of cancer cells expressing SF3B1K700E, SRSF2P95H, or U2AF1S34F mutations compared to WT cells. In animals xenografted with SF3B1K700E knock-in leukemia K562 cells or mice transplanted with Srsf2P95H/MLL-AF9 mouse AML cells, oral H3B-8800 treatment demonstrated splicing modulation and inhibited tumor growth, while no therapeutic impact was seen in WT controls. These data were also evident in patient-derived xenografts (PDX) from patients with CMML where H3B-8800 resulted in a substantial reduction of leukemic burden only in SRSF2-mutant but not in WT CMML PDX models. Additionally, due to the high frequency of U2AF1 mutations in non-small cell lung cancer, H3B-8800 was tested in U2AF1S34F-mutant H441 lung cancer cells. Similar to the results from leukemia models, H3B-8800 demonstrated preferential lethality of U2AF1-mutant cells in vitro and in in vivo orthotopic xenografts at well tolerated doses. RNA-seq of isogenic K562 cells treated with H3B-8800 revealed dose-dependent inhibition of splicing. Although global inhibition of RNA splicing was not observed; H3B-8800 treatment led to preferential intron retention of transcripts with shorter and more GC-rich regions compared to those unaffected by drug. Interestingly, H3B-8800-retained introns commonly disrupted the expression of spliceosomal genes, suggesting that the preferential effect of H3B-8800 on spliceosome mutant cells is due to the dependency of these cells on expression of WT spliceosomal genes. These data identify a novel therapeutic approach with selective lethality in leukemias and lung cancers bearing a spliceosome mutation. Despite the essential nature of splicing, cancer cells without a spliceosome mutation were less sensitive to H3B-8800 compared with potent eradication of mutant counterparts. H3B-8800 is currently undergoing clinical evaluation in patients with MDS, AML, and CMML. Citation Format: Silvia Buonamici, Akihide Yoshimi, Michael Thomas, Michael Seiler, Betty Chan, Benjamin Caleb, Fred Csibi, Rachel Darman, Peter Fekkes, Craig Karr, Gregg Keaney, Amy Kim, Virginia Klimek, Pavan Kumar, Kaiko Kunii, Stanley Chun-Wei Lee, Xiang Liu, Crystal MacKenzie, Carol Meeske, Yoshiharu Mizui, Eric Padron, Eunice Park, Ermira Pazolli, Sudeep Prajapati, Nathalie Rioux, Justin Taylor, John Wang, Markus Warmuth, Huilan Yao, Lihua Yu, Ping Zhu, Omar Abdel-Wahab, Peter Smith. H3B-8800, a novel orally available SF3b modulator, shows preclinical efficacy across spliceosome mutant cancers [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 1185. doi:10.1158/1538-7445.AM2017-1185
Molecular Cancer Therapeutics | 2015
Daniel Aird; Ermira Pazolli; Craig Furman; Linda Lee; Kaiko Kunii; Eun Sun Park; Craig Karr; Betty Chan; Michelle Aicher; Silvia Buonamici; John Wang; Jacob Feala; Lihua Yu; Markus Warmuth; P.G.R. Smith; Peter Fekkes; Ping Zhu; Baudouin Gerard; Yoshiharu Mizui; Laura Corson
Myeloid cell leukemia 1 (MCL1) is a member of the BCL2 family of proteins governing the apoptosis pathway and is one of the most frequently amplified genes in cancer. MCL1 overexpression often results in dependence on MCL1 for survival and is linked to resistance to anticancer therapies. However, the development of direct MCL1 inhibitors has proven challenging and new modalities for targeting MCL1 are required. Alternative splicing of MCL1 converts the anti-apoptotic MCL1 long (MCL1L) isoform to the BH3-only MCL1 short (MCL1S) isoform, which has been reported to be pro-apoptotic. Thus, changing MCL1 isoform levels through modulation of RNA splicing may represent an attractive approach to targeting MCL1-amplified cancers. To this end, we tested a collection of small molecule SF3B modulators that impact RNA splicing on MCL1-dependent and MCL1-independent NSCLC cell lines. SF3B modulators induced rapid downregulation of the long form and upregulation of the short- and intron-containing form of MCL1 across models; however, apoptosis was only observed in MCL1-dependent cells. Importantly, SF3B modulators preferentially killed MCL1-dependent cell lines and sensitivity correlated with MCL1 amplification. To dissect the mechanism of SF3B modulator-induced cytotoxicity, we overexpressed either the cDNA for the BH3-only short isoform or the full length isoform of MCL1. Surprisingly, overexpression of MCL1S cDNA had no significant effect on cells by itself and did not sensitize cells to SF3B modulator cytotoxicity. Conversely, MCL1L-specific shRNA knockdown was sufficient to kill MCL1-dependent cells and SF3B modulator cytotoxicity was rescued by expression of MCL1L cDNA. Together, these results argue that MCL1L modulation and not MCL1S upregulation is the effector of SF3B modulator cytotoxicity. In immunocompromised mice bearing MCL1-dependent xenograft models, SF3B1 modulator treatment resulted in significant downregulation of MCL1 levels accompanied by induction of apoptosis and robust efficacy at well-tolerated doses. Moreover, MCL1L cDNA expression in MCL1-dependent models rescued apoptosis induced by SF3B1 modulator treatment. These studies provide proof-of-concept that splicing modulation is an effective strategy for targeting cancers dependent on MCL1. Citation Format: Daniel Aird, Ermira Pazolli, Craig Furman, Linda Lee, Kaiko Kunii, Eun Sun Park, Craig Karr, Betty Chan, Michelle Aicher, Silvia Buonamici, John Yuan Wang, Jacob Feala, Lihua Yu, Markus Warmuth, Peter Smith, Peter Fekkes, Ping Zhu, Baudouin Gerard, Yoshiharu Mizui, Laura Corson. Targeting MCL1-dependent cancers with SF3B splicing modulators. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2015 Nov 5-9; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2015;14(12 Suppl 2):Abstract nr C8.
Cancer Research | 2015
Eun Sun Park; Michelle Aicher; Daniel Aird; Silvia Buonamici; Betty Chan; Cheryl Eifert; Peter Fekkes; Craig Furman; Baudouin Gerard; Craig Karr; Gregg F. Keaney; Kaiko Kunii; Linda Lee; Ermira Pazolli; Sudeep Prajapati; Takashi Satoh; P.G.R. Smith; John Wang; Karen Wang; Markus Warmuth; Lihua Yu; Ping Zhu; Yoshiharu Mizui; Laura Corson
Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA Myeloid cell leukemia 1 (MCL1) is a member of the BCL2-family of proteins governing the apoptosis pathway and is one of the most frequently amplified genes in cancer. MCL1 overexpression often results in dependence on MCL1 for survival and is linked to resistance to anticancer therapies. However, the development of direct MCL1 inhibitors has proven challenging and thus far has been unsuccessful. Alternative splicing of MCL1 converts the anti-apoptotic MCL1 long (MCL1-L) isoform to the BH3-only containing MCL1 short (MCL1-S) isoform. As a potential approach for targeting MCL1-dependent cancers, we explored the use of MCL1 splicing modulators. We screened a unique chemical library of compounds that span a range of splicing activities on various substrates in an in vitro assay. Interestingly, we found a subset of general splicing modulators, as well as a subset of SF3B1 inhibitors, that are capable of driving the distinctive alterations in MCL1 splicing that in turn can trigger preferential killing of MCL1-dependent cell lines. The best modulators induce a prominent down-regulation of MCL1-L, up-regulation of MCL1-S, and accumulation of intron-retained MCL1 transcript. Somewhat surprisingly, several additional avenues of investigation pointed to MCL1-L down-regulation rather than MCL1-S up-regulation as the driver of preferential killing of MCL1-dependent cells. This includes the fact that compound-induced cytotoxicity can be rescued by expression of a MCL1-L cDNA and MCL1-L specific shRNA knockdown is sufficient to kill MCL1-dependent cells. On the other hand, overexpression of MCL1-S cDNA had no significant effect on cells and splicing modulators that induced very high levels of MCL1-S mRNA in the absence potent MCL1-L down-regulation exhibit minimal cytotoxicity. Biochemical characterization and understanding of these MCL1 splicing modulators has enabled further optimization of compounds that can induce potent and preferential killing of MCL1-dependent cancer cell lines in vitro. Preliminary studies in mice bearing MCL1-dependent NSCLC xenografts confirmed current lead compounds can indeed induce rapid down-regulation of MCL1-L, induction of apoptosis, and antitumor activity. Collectively these data yield insight into mechanisms of MCL1 splicing modulation that can trigger acute apoptosis in MCL1-dependent cancers and provides support for the idea of using splicing modulators to target difficult-to-drug oncogenic drivers such as MCL1. Citation Format: Eun Sun Park, Michelle Aicher, Daniel Aird, Silvia Buonamici, Betty Chan, Cheryl Eifert, Peter Fekkes, Craig Furman, Baudouin Gerard, Craig Karr, Gregg Keaney, Kaiko Kunii, Linda Lee, Ermira Pazolli, Sudeep Prajapati, Takashi Satoh, Peter Smith, John Yuan Wang, Karen Wang, Markus Warmuth, Lihua Yu, Ping Zhu, Yoshiharu Mizui, Laura B. Corson. Targeting MCL1-dependent cancers through RNA splicing modulation. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 2941. doi:10.1158/1538-7445.AM2015-2941
Current Opinion in Genetics & Development | 2008
Ermira Pazolli; Sheila A. Stewart