Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ernazar Abdikamalov is active.

Publication


Featured researches published by Ernazar Abdikamalov.


The Astrophysical Journal | 2013

General-relativistic Simulations of Three-dimensional Core-collapse Supernovae

Christian D. Ott; Ernazar Abdikamalov; Philipp Mösta; Roland Haas; Steve Drasco; Evan O'Connor; Christian Reisswig; Casey Meakin

We study the three-dimensional (3D) hydrodynamics of the post-core-bounce phase of the collapse of a 27 M_☉ star and pay special attention to the development of the standing accretion shock instability (SASI) and neutrino-driven convection. To this end, we perform 3D general-relativistic simulations with a three-species neutrino leakage scheme. The leakage scheme captures the essential aspects of neutrino cooling, heating, and lepton number exchange as predicted by radiation-hydrodynamics simulations. The 27 M_☉ progenitor was studied in 2D by Muller et al., who observed strong growth of the SASI while neutrino-driven convection was suppressed. In our 3D simulations, neutrino-driven convection grows from numerical perturbations imposed by our Cartesian grid. It becomes the dominant instability and leads to large-scale non-oscillatory deformations of the shock front. These will result in strongly aspherical explosions without the need for large-scale SASI shock oscillations. Low-l-mode SASI oscillations are present in our models, but saturate at small amplitudes that decrease with increasing neutrino heating and vigor of convection. Our results, in agreement with simpler 3D Newtonian simulations, suggest that once neutrino-driven convection is started, it is likely to become the dominant instability in 3D. Whether it is the primary instability after bounce will ultimately depend on the physical seed perturbations present in the cores of massive stars. The gravitational wave signal, which we extract and analyze for the first time from 3D general-relativistic models, will serve as an observational probe of the postbounce dynamics and, in combination with neutrinos, may allow us to determine the primary hydrodynamic instability.


The Astrophysical Journal | 2014

MAGNETOROTATIONAL CORE-COLLAPSE SUPERNOVAE IN THREE DIMENSIONS

Philipp Mösta; Sherwood Richers; Christian D. Ott; Roland Haas; Anthony L. Piro; Kristen Boydstun; Ernazar Abdikamalov; Christian Reisswig

We present results of new three-dimensional (3D) general-relativistic magnetohydrodynamic simulations of rapidly rotating strongly magnetized core collapse. These simulations are the first of their kind and include a microphysical finite-temperature equation of state and a leakage scheme that captures the overall energetics and lepton number exchange due to postbounce neutrino emission. Our results show that the 3D dynamics of magnetorotational core-collapse supernovae are fundamentally different from what was anticipated on the basis of previous simulations in axisymmetry (2D). A strong bipolar jet that develops in a simulation constrained to 2D is crippled by a spiral instability and fizzles in full 3D. While multiple (magneto-)hydrodynamic instabilities may be present, our analysis suggests that the jet is disrupted by an m = 1 kink instability of the ultra-strong toroidal field near the rotation axis. Instead of an axially symmetric jet, a completely new, previously unreported flow structure develops. Highly magnetized spiral plasma funnels expelled from the core push out the shock in polar regions, creating wide secularly expanding lobes. We observe no runaway explosion by the end of the full 3D simulation 185u2009ms after bounce. At this time, the lobes have reached maximum radii of ~900u2009km.


The Astrophysical Journal | 2012

A New Monte Carlo Method for Time-dependent Neutrino Radiation Transport

Ernazar Abdikamalov; Adam Burrows; Christian D. Ott; Frank Löffler; Evan O'Connor; Joshua C. Dolence

Monte Carlo approaches to radiation transport have several attractive properties such as simplicity of implementation, high accuracy, and good parallel scaling. Moreover, Monte Carlo methods can handle complicated geometries and are relatively easy to extend to multiple spatial dimensions, which makes them potentially interesting in modeling complex multi-dimensional astrophysical phenomena such as core-collapse supernovae. The aim of this paper is to explore Monte Carlo methods for modeling neutrino transport in core-collapse supernovae. We generalize the Implicit Monte Carlo photon transport scheme of Fleck & Cummings and gray discrete-diffusion scheme of Densmore et al. to energy-, time-, and velocity-dependent neutrino transport. Using our 1D spherically-symmetric implementation, we show that, similar to the photon transport case, the implicit scheme enables significantly larger timesteps compared with explicit time discretization, without sacrificing accuracy, while the discrete-diffusion method leads to significant speed-ups at high optical depth. Our results suggest that a combination of spectral, velocity-dependent, Implicit Monte Carlo and discrete-diffusion Monte Carlo methods represents a robust approach for use in neutrino transport calculations in core-collapse supernovae. Our velocity-dependent scheme can easily be adapted to photon transport.


Physical Review Letters | 2011

Dynamics and Gravitational Wave Signature of Collapsar Formation

Christian D. Ott; Christian Reisswig; Evan O'Connor; Ulrich Sperhake; Frank Löffler; Peter Diener; Ernazar Abdikamalov; Ian Hawke; Adam Burrows

We perform 3+1 general relativistic simulations of rotating core collapse in the context of the collapsar model for long gamma-ray bursts. We employ a realistic progenitor, rotation based on results of stellar evolution calculations, and a simplified equation of state. Our simulations track self-consistently collapse, bounce, the postbounce phase, black hole formation, and the subsequent early hyperaccretion phase. We extract gravitational waves from the spacetime curvature and identify a unique gravitational wave signature associated with the early phase of collapsar formation.


The Astrophysical Journal | 2015

Neutrino-driven Turbulent Convection and Standing Accretion Shock Instability in Three-Dimensional Core-Collapse Supernovae

Ernazar Abdikamalov; Christian D. Ott; David Radice; Luke F. Roberts; Roland Haas; Christian Reisswig; Philipp Mösta; Hannah Klion

We conduct a series of numerical experiments into the nature of three-dimensional (3D) hydrodynamics in the postbounce stalled-shock phase of core-collapse supernovae using 3D general-relativistic hydrodynamic simulations of a 27-M⊙ progenitor star with a neutrino leakage/heating scheme. We vary the strength of neutrino heating and find three cases of 3D dynamics: (1) neutrino-driven convection, (2) initially neutrino-driven convection and subsequent development of the standing accretion shock instability (SASI), (3) SASI dominated evolution. This confirms previous 3D results of Hanke et al. 2013, ApJ 770, 66 and Couch & Connor 2014, ApJ 785, 123. We carry out simulations with resolutions differing by up to a factor of ∼4 and demonstrate that low resolution is artificially favorable for explosion in the 3D convection-dominated case, since it decreases the efficiency of energy transport to small scales. Low resolution results in higher radial convective fluxes of energy and enthalpy, more fully buoyant mass, and stronger neutrino heating. In the SASI-dominated case, lower resolution damps SASI oscillations. In the convection-dominated case, a quasi-stationary angular kinetic energy spectrum E(l) develops in the heating layer. Like other 3D studies, we find E(l)∝l−1 in the inertial range, while theory and local simulations argue for E(l)∝l−5/3. We argue that current 3D simulations do not resolve the inertial range of turbulence and are affected by numerical viscosity up to the energy containing scale, creating a bottleneck that prevents an efficient turbulent cascade.


Physical Review D | 2012

Correlated Gravitational Wave and Neutrino Signals from General-Relativistic Rapidly Rotating Iron Core Collapse

Christian D. Ott; Ernazar Abdikamalov; Evan O'Connor; Christian Reisswig; Roland Haas; P. Kalmus; S. Drasco; Adam Burrows

We present results from a new set of 3D general-relativistic hydrodynamic simulations of rotating iron core collapse. We assume octant symmetry and focus on axisymmetric collapse, bounce, the early postbounce evolution, and the associated gravitational wave (GW) and neutrino signals. We employ a finite-temperature nuclear equation of state, parameterized electron capture in the collapse phase, and a multi-species neutrino leakage scheme after bounce. The latter captures the important effects of deleptonization, neutrino cooling and heating and enables approximate predictions for the neutrino luminosities in the early evolution after core bounce. We consider 12_⊙ and 40_⊙ presupernova models and systematically study the effects of (i) rotation, (ii) progenitor structure, and (iii) postbounce neutrino leakage on dynamics, GW, and, neutrino signals. We demonstrate, that the GW signal of rapidly rotating core collapse is practically independent of progenitor mass and precollapse structure. Moreover, we show that the effects of neutrino leakage on the GW signal are strong only in nonrotating or slowly rotating models in which GW emission is not dominated by inner core dynamics. In rapidly rotating cores, core bounce of the centrifugally-deformed inner core excites the fundamental quadrupole pulsation mode of the nascent protoneutron star. The ensuing global oscillations (f ~700-800 Hz) lead to pronounced oscillations in the GW signal and correlated strong variations in the rising luminosities of antineutrino and heavy-lepton neutrinos. We find these features in cores that collapse to protoneutron stars with spin periods ≾ 2.5 ms and rotational energies sufficient to drive hyper-energetic core-collapse supernova explosions. Hence, joint GW + neutrino observations of a core collapse event could deliver strong evidence for or against rapid core rotation. nOur estimates suggest that the GW signal should be detectable throughout the Milky nWay by advanced laser-interferometer GW observatories, but a water-Cherenkov neutrino detector nwould have to be of near-megaton size to observe the variations in the early neutrino luminosities nfrom a core collapse event at 1 kpc.


Physical Review D | 2011

Stability of general-relativistic accretion disks

Oleg Korobkin; Ernazar Abdikamalov; Nikolaos Stergioulas; Burkhard Zink

Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios such as binary neutron star and black hole-neutron star coalescences, as well as the core collapse of massive stars. We explore the stability of such disks against runaway and nonaxisymmetric instabilities using three-dimensional hydrodynamics simulations in full general relativity using the Thor code. We model the disk matter using the ideal fluid approximation with a {Gamma}-law equation of state with {Gamma}=4/3. We explore three disk models around nonrotating black holes with disk-to-black hole mass ratios of 0.24, 0.17, and 0.11. Because of metric blending in our initial data, all of our initial models contain an initial axisymmetric perturbation which induces radial disk oscillations. Despite these oscillations, our models do not develop the runaway instability during the first several orbital periods. Instead, all of the models develop unstable nonaxisymmetric modes on a dynamical time scale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the nonaxisymmetric mode with azimuthal number m=1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m=1 mode in some cases. Overall,morexa0» our simulations show that the properties of the unstable nonaxisymmetric modes in our disk models are qualitatively similar to those in the Newtonian theory.«xa0less


Physical Review Letters | 2013

Formation and coalescence of cosmological supermassive-black-hole binaries in supermassive-star collapse

Christian Reisswig; C. D. Ott; Ernazar Abdikamalov; Roland Haas; Philipp Mösta

We study the collapse of rapidly rotating supermassive stars that may have formed in the early Universe. By self-consistently simulating the dynamics from the onset of collapse using three-dimensional general-relativistic hydrodynamics with fully dynamical spacetime evolution, we show that seed perturbations in the progenitor can lead to the formation of a system of two high-spin supermassive black holes, which inspiral and merge under the emission of powerful gravitational radiation that could be observed at redshifts z is approximately equal or > to 10 with the DECIGO or Big Bang Observer gravitational-wave observatories, assuming supermassive stars in the mass range 10(4)-10(6)M[symbol: see text]. The remnant is rapidly spinning with dimensionless spin a*=0.9. The surrounding accretion disk contains ~10% of the initial mass.


Journal of Computational Physics | 2013

A new spherical harmonics scheme for multi-dimensional radiation transport I. Static matter configurations

David Radice; Ernazar Abdikamalov; Luciano Rezzolla; Christian D. Ott

Recent work by McClarren and Hauck (2010) [31] suggests that the filtered spherical harmonics method represents an efficient, robust, and accurate method for radiation transport, at least in the two-dimensional (2D) case. We extend their work to the three-dimensional (3D) case and find that all of the advantages of the filtering approach identified in 2D are present also in the 3D case. We reformulate the filter operation in a way that is independent of the timestep and of the spatial discretization. We also explore different second- and fourth-order filters and find that the second-order ones yield significantly better results. Overall, our findings suggest that the filtered spherical harmonics approach represents a very promising method for 3D radiation transport calculations.


Physical Review D | 2013

Three-Dimensional General-Relativistic Hydrodynamic Simulations of Binary Neutron Star Coalescence and Stellar Collapse with Multipatch Grids

Christian Reisswig; Roland Haas; C. D. Ott; Ernazar Abdikamalov; Philipp Mösta; Denis Pollney

We present a new three-dimensional, general-relativistic hydrodynamic evolution scheme coupled to dynamical spacetime evolutions which is capable of efficiently simulating stellar collapse, isolated neutron stars, black hole formation, and binary neutron star coalescence. We make use of a set of adapted curvilinear grids (multipatches) coupled with flux-conservative, cell-centered adaptive mesh refinement. This allows us to significantly enlarge our computational domains while still maintaining high resolution in the gravitational wave extraction zone, the exterior layers of a star, or the region of mass ejection in merging neutron stars. The fluid is evolved with a high-resolution, shock-capturing finite volume scheme, while the spacetime geometry is evolved using fourth-order finite differences. We employ a multirate Runge-Kutta time-integration scheme for efficiency, evolving the fluid with second-order integration and the spacetime geometry with fourth-order integration. We validate our code by a number of benchmark problems: a rotating stellar collapse model, an excited neutron star, neutron star collapse to a black hole, and binary neutron star coalescence. The test problems, especially the latter, greatly benefit from higher resolution in the gravitational wave extraction zone, causally disconnected outer boundaries, and application of Cauchy-characteristic gravitational wave extraction. We show that we are able to extract convergent gravitational wave modes up to (l,m)=(6,6). This study paves the way for more realistic and detailed studies of compact objects and stellar collapse in full three dimensions and in large computational domains. The multipatch infrastructure and the improvements to mesh refinement and hydrodynamics codes discussed in this paper will be made available as part of the open-source Einstein Toolkit.

Collaboration


Dive into the Ernazar Abdikamalov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Reisswig

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Evan O'Connor

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philipp Mösta

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Löffler

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Diener

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

S. Drasco

California Polytechnic State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge