Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philipp Mösta is active.

Publication


Featured researches published by Philipp Mösta.


Nature | 2015

A large-scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae

Philipp Mösta; Christian D. Ott; David Radice; Luke F. Roberts; Roland Haas

Magnetohydrodynamic turbulence is important in many high-energy astrophysical systems, where instabilities can amplify the local magnetic field over very short timescales. Specifically, the magnetorotational instability and dynamo action have been suggested as a mechanism for the growth of magnetar-strength magnetic fields (of 1015 gauss and above) and for powering the explosion of a rotating massive star. Such stars are candidate progenitors of type Ic-bl hypernovae, which make up all supernovae that are connected to long γ-ray bursts. The magnetorotational instability has been studied with local high-resolution shearing-box simulations in three dimensions, and with global two-dimensional simulations, but it is not known whether turbulence driven by this instability can result in the creation of a large-scale, ordered and dynamically relevant field. Here we report results from global, three-dimensional, general-relativistic magnetohydrodynamic turbulence simulations. We show that hydromagnetic turbulence in rapidly rotating protoneutron stars produces an inverse cascade of energy. We find a large-scale, ordered toroidal field that is consistent with the formation of bipolar magnetorotationally driven outflows. Our results demonstrate that rapidly rotating massive stars are plausible progenitors for both type Ic-bl supernovae and long γ-ray bursts, and provide a viable mechanism for the formation of magnetars. Moreover, our findings suggest that rapidly rotating massive stars might lie behind potentially magnetar-powered superluminous supernovae.


Physical Review D | 2010

Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries

L. Santamaria; F. Ohme; P. Ajith; Bernd Brügmann; Nils Dorband; Mark Hannam; S. Husa; Philipp Mösta; Denis Pollney; Christian Reisswig; E. L. Robinson; Jennifer Seiler; Badri Krishnan

We present a new phenomenological gravitational waveform model for the inspiral and coalescence of nonprecessing spinning black hole binaries. Our approach is based on a frequency-domain matching of post-Newtonian inspiral waveforms with numerical relativity based binary black hole coalescence waveforms. We quantify the various possible sources of systematic errors that arise in matching post-Newtonian and numerical relativity waveforms, and we use a matching criteria based on minimizing these errors; we find that the dominant source of errors are those in the post-Newtonian waveforms near the merger. An analytical formula for the dominant mode of the gravitational radiation of nonprecessing black hole binaries is presented that captures the phenomenology of the hybrid waveforms. Its implementation in the current searches for gravitational waves should allow cross-checks of other inspiral-merger-ringdown waveform families and improve the reach of gravitational-wave searches.


The Astrophysical Journal | 2013

General-relativistic Simulations of Three-dimensional Core-collapse Supernovae

Christian D. Ott; Ernazar Abdikamalov; Philipp Mösta; Roland Haas; Steve Drasco; Evan O'Connor; Christian Reisswig; Casey Meakin

We study the three-dimensional (3D) hydrodynamics of the post-core-bounce phase of the collapse of a 27 M_☉ star and pay special attention to the development of the standing accretion shock instability (SASI) and neutrino-driven convection. To this end, we perform 3D general-relativistic simulations with a three-species neutrino leakage scheme. The leakage scheme captures the essential aspects of neutrino cooling, heating, and lepton number exchange as predicted by radiation-hydrodynamics simulations. The 27 M_☉ progenitor was studied in 2D by Muller et al., who observed strong growth of the SASI while neutrino-driven convection was suppressed. In our 3D simulations, neutrino-driven convection grows from numerical perturbations imposed by our Cartesian grid. It becomes the dominant instability and leads to large-scale non-oscillatory deformations of the shock front. These will result in strongly aspherical explosions without the need for large-scale SASI shock oscillations. Low-l-mode SASI oscillations are present in our models, but saturate at small amplitudes that decrease with increasing neutrino heating and vigor of convection. Our results, in agreement with simpler 3D Newtonian simulations, suggest that once neutrino-driven convection is started, it is likely to become the dominant instability in 3D. Whether it is the primary instability after bounce will ultimately depend on the physical seed perturbations present in the cores of massive stars. The gravitational wave signal, which we extract and analyze for the first time from 3D general-relativistic models, will serve as an observational probe of the postbounce dynamics and, in combination with neutrinos, may allow us to determine the primary hydrodynamic instability.


The Astrophysical Journal | 2014

MAGNETOROTATIONAL CORE-COLLAPSE SUPERNOVAE IN THREE DIMENSIONS

Philipp Mösta; Sherwood Richers; Christian D. Ott; Roland Haas; Anthony L. Piro; Kristen Boydstun; Ernazar Abdikamalov; Christian Reisswig

We present results of new three-dimensional (3D) general-relativistic magnetohydrodynamic simulations of rapidly rotating strongly magnetized core collapse. These simulations are the first of their kind and include a microphysical finite-temperature equation of state and a leakage scheme that captures the overall energetics and lepton number exchange due to postbounce neutrino emission. Our results show that the 3D dynamics of magnetorotational core-collapse supernovae are fundamentally different from what was anticipated on the basis of previous simulations in axisymmetry (2D). A strong bipolar jet that develops in a simulation constrained to 2D is crippled by a spiral instability and fizzles in full 3D. While multiple (magneto-)hydrodynamic instabilities may be present, our analysis suggests that the jet is disrupted by an m = 1 kink instability of the ultra-strong toroidal field near the rotation axis. Instead of an axially symmetric jet, a completely new, previously unreported flow structure develops. Highly magnetized spiral plasma funnels expelled from the core push out the shock in polar regions, creating wide secularly expanding lobes. We observe no runaway explosion by the end of the full 3D simulation 185 ms after bounce. At this time, the lobes have reached maximum radii of ~900 km.


Classical and Quantum Gravity | 2013

Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration

Ian Hinder; A. Buonanno; Michael Boyle; Zachariah B. Etienne; James Healy; Nathan K. Johnson-McDaniel; Alessandro Nagar; Hiroyuki Nakano; Y. Pan; Harald P. Pfeiffer; Michael Pürrer; Christian Reisswig; Mark A. Scheel; Ulrich Sperhake; Bela Szilagyi; Wolfgang Tichy; Barry Wardell; Anıl Zenginoğlu; Daniela Alic; Sebastiano Bernuzzi; Tanja Bode; Bernd Brügmann; Luisa T. Buchman; Manuela Campanelli; Tony Chu; Thibault Damour; Jason D Grigsby; Mark Hannam; Roland Haas; Daniel A. Hemberger

The Numerical–Relativity–Analytical–Relativity (NRAR) collaboration is a joint effort between members of the numerical relativity, analytical relativity and gravitational-wave data analysis communities. The goal of the NRAR collaboration is to produce numerical-relativity simulations of compact binaries and use them to develop accurate analytical templates for the LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and extracting astrophysical information from them. We describe the results of the first stage of the NRAR project, which focused on producing an initial set of numerical waveforms from binary black holes with moderate mass ratios and spins, as well as one non-spinning binary configuration which has a mass ratio of 10. All of the numerical waveforms are analysed in a uniform and consistent manner, with numerical errors evaluated using an analysis code created by members of the NRAR collaboration. We compare previously-calibrated, non-precessing analytical waveforms, notably the effective-one-body (EOB) and phenomenological template families, to the newly-produced numerical waveforms. We find that when the binarys total mass is ~100–200M⊙, current EOB and phenomenological models of spinning, non-precessing binary waveforms have overlaps above 99% (for advanced LIGO) with all of the non-precessing-binary numerical waveforms with mass ratios ≤4, when maximizing over binary parameters. This implies that the loss of event rate due to modelling error is below 3%. Moreover, the non-spinning EOB waveforms previously calibrated to five non-spinning waveforms with mass ratio smaller than 6 have overlaps above 99.7% with the numerical waveform with a mass ratio of 10, without even maximizing on the binary parameters.


Classical and Quantum Gravity | 2012

The NINJA-2 catalog of hybrid post-Newtonian/numerical-relativity waveforms for non-precessing black-hole binaries

P. Ajith; Michael Boyle; D. A. Brown; Bernd Brügmann; Luisa T. Buchman; L. Cadonati; Manuela Campanelli; Tony Chu; Zachariah B. Etienne; S. Fairhurst; Mark Hannam; James Healy; Ian Hinder; S. Husa; Lawrence E. Kidder; Badri Krishnan; Pablo Laguna; Yuk Tung Liu; L. T. London; Carlos O. Lousto; Geoffrey Lovelace; Ilana MacDonald; Pedro Marronetti; S. R. P. Mohapatra; Philipp Mösta; Doreen Müller; Bruno C. Mundim; Hiroyuki Nakano; F. Ohme; Vasileios Paschalidis

The numerical injection analysis (NINJA) project is a collaborative effort between members of the numerical-relativity and gravitational wave data-analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search and parameter-estimation algorithms using numerically generated waveforms and to foster closer collaboration between the numerical-relativity and data-analysis communities. The first NINJA project used only a small number of injections of short numerical-relativity waveforms, which limited its ability to draw quantitative conclusions. The goal of the NINJA-2 project is to overcome these limitations with long post-Newtonian—numerical-relativity hybrid waveforms, large numbers of injections and the use of real detector data. We report on the submission requirements for the NINJA-2 project and the construction of the waveform catalog. Eight numerical-relativity groups have contributed 56 hybrid waveforms consisting of a numerical portion modeling the late inspiral, merger and ringdown stitched to a post-Newtonian portion modeling the early inspiral. We summarize the techniques used by each group in constructing their submissions. We also report on the procedures used to validate these submissions, including examination in the time and frequency domains and comparisons of waveforms from different groups against each other. These procedures have so far considered only the (l, m) = (2, 2) mode. Based on these studies, we judge that the hybrid waveforms are suitable for NINJA-2 studies. We note some of the plans for these investigations.


Classical and Quantum Gravity | 2014

GRHydro: a new open-source general-relativistic magnetohydrodynamics code for the Einstein toolkit

Philipp Mösta; Bruno C. Mundim; Joshua A. Faber; Roland Haas; Scott C. Noble; Tanja Bode; Frank Löffler; Christian D. Ott; Christian Reisswig

We present the new general-relativistic magnetohydrodynamics (GRMHD) capabilities of the Einstein toolkit, an open-source community-driven numerical relativity and computational relativistic astrophysics code. The GRMHD extension of the toolkit builds upon previous releases and implements the evolution of relativistic magnetized fluids in the ideal MHD limit in fully dynamical spacetimes using the same shock-capturing techniques previously applied to hydrodynamical evolution. In order to maintain the divergence-free character of the magnetic field, the code implements both constrained transport and hyperbolic divergence cleaning schemes. We present test results for a number of MHD tests in Minkowski and curved spacetimes. Minkowski tests include aligned and oblique planar shocks, cylindrical explosions, magnetic rotors, Alfv´ en waves and advected loops, as well as a set of tests designed to study the response of the divergence cleaning scheme to numerically generated monopoles. We study the code’s performance in curved spacetimes with spherical accretion onto a black hole on a fixed background spacetime


Physical Review Letters | 2013

Formation and coalescence of cosmological supermassive-black-hole binaries in supermassive-star collapse

Christian Reisswig; C. D. Ott; Ernazar Abdikamalov; Roland Haas; Philipp Mösta

We study the collapse of rapidly rotating supermassive stars that may have formed in the early Universe. By self-consistently simulating the dynamics from the onset of collapse using three-dimensional general-relativistic hydrodynamics with fully dynamical spacetime evolution, we show that seed perturbations in the progenitor can lead to the formation of a system of two high-spin supermassive black holes, which inspiral and merge under the emission of powerful gravitational radiation that could be observed at redshifts z is approximately equal or > to 10 with the DECIGO or Big Bang Observer gravitational-wave observatories, assuming supermassive stars in the mass range 10(4)-10(6)M[symbol: see text]. The remnant is rapidly spinning with dimensionless spin a*=0.9. The surrounding accretion disk contains ~10% of the initial mass.


Physical Review D | 2013

Three-Dimensional General-Relativistic Hydrodynamic Simulations of Binary Neutron Star Coalescence and Stellar Collapse with Multipatch Grids

Christian Reisswig; Roland Haas; C. D. Ott; Ernazar Abdikamalov; Philipp Mösta; Denis Pollney

We present a new three-dimensional, general-relativistic hydrodynamic evolution scheme coupled to dynamical spacetime evolutions which is capable of efficiently simulating stellar collapse, isolated neutron stars, black hole formation, and binary neutron star coalescence. We make use of a set of adapted curvilinear grids (multipatches) coupled with flux-conservative, cell-centered adaptive mesh refinement. This allows us to significantly enlarge our computational domains while still maintaining high resolution in the gravitational wave extraction zone, the exterior layers of a star, or the region of mass ejection in merging neutron stars. The fluid is evolved with a high-resolution, shock-capturing finite volume scheme, while the spacetime geometry is evolved using fourth-order finite differences. We employ a multirate Runge-Kutta time-integration scheme for efficiency, evolving the fluid with second-order integration and the spacetime geometry with fourth-order integration. We validate our code by a number of benchmark problems: a rotating stellar collapse model, an excited neutron star, neutron star collapse to a black hole, and binary neutron star coalescence. The test problems, especially the latter, greatly benefit from higher resolution in the gravitational wave extraction zone, causally disconnected outer boundaries, and application of Cauchy-characteristic gravitational wave extraction. We show that we are able to extract convergent gravitational wave modes up to (l,m)=(6,6). This study paves the way for more realistic and detailed studies of compact objects and stellar collapse in full three dimensions and in large computational domains. The multipatch infrastructure and the improvements to mesh refinement and hydrodynamics codes discussed in this paper will be made available as part of the open-source Einstein Toolkit.


Physical Review D | 2016

How loud are neutron star mergers

Sebastiano Bernuzzi; David Radice; Christian D. Ott; Luke F. Roberts; Philipp Mösta; Filippo Galeazzi

We present results from the first large parameter study of neutron star mergers using fully general relativistic simulations with finite-temperature microphysical equations of state and neutrino cooling. We consider equal and unequal-mass binaries drawn from the galactic population and simulate each binary with three different equations of state. Our focus is on the emission of energy and angular momentum in gravitational waves in the postmerger phase. We find that the emitted gravitational-wave energy in the first ∼10  ms of the life of the resulting hypermassive neutron star (HMNS) is about twice the energy emitted over the entire inspiral history of the binary. The total radiated energy per binary mass is comparable to or larger than that of nonspinning black hole inspiral-mergers. About 0.8–2.5% of the binary mass-energy is emitted at kHz frequencies in the early HMNS evolution. We find a clear dependence of the postmerger gravitational wave emission on binary configuration and equation of state and show that it can be encoded as a broad function of the binary tidal coupling constant κ^T_2. Our results also demonstrate that the dimensionless spin of black holes resulting from subsequent HMNS collapse are limited to ≲ 0.7–0.8. This may significantly impact the neutrino pair annihilation mechanism for powering short gamma-ray bursts (sGRB).

Collaboration


Dive into the Philipp Mösta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Reisswig

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Christian D. Ott

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ernazar Abdikamalov

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Luke F. Roberts

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bela Szilagyi

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge