Ernest Montbrió
Pompeu Fabra University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ernest Montbrió.
Physical Review X | 2014
Diego Pazó; Ernest Montbrió
We thank Juan M. Lopez for a critical reading of the manuscript, Arkady Pikovsky for interesting discussions, and John Rinzel for pointing us to Ref. [7]. D. P. acknowl-edges support from Cantabria International Campus and the Ramon y Cajal program of MINECO (Spain). We acknowl-edge support from the Spanish research Projects No. FIS2009-12964-C05-05 and No. SAF2010-16085.
Physical Review X | 2015
Ernest Montbrió; Diego Pazó; Alex Roxin
A major goal of neuroscience, statistical physics and nonlinear dynamics is to understand how brain function arises from the collective dynamics of networks of spiking neurons. This challenge has been chiefly addressed through large-scale numerical simulations. Alternatively, researchers have formulated mean-field theories to gain insight into macroscopic states of large neuronal networks in terms of the collective firing activity of the neurons, or the firing rate. However, these theories have not succeeded in establishing an exact correspondence between the firing rate of the network and the underlying microscopic state of the spiking neurons. This has largely constrained the range of applicability of such macroscopic descriptions, particularly when trying to describe neuronal synchronization. Here we provide the derivation of a set of exact macroscopic equations for a network of spiking neurons. Our results reveal that the spike generation mechanism of individual neurons introduces an effective coupling between two biophysically relevant macroscopic quantities, the firing rate and the mean membrane potential, which together govern the evolution of the neuronal network. The resulting equations exactly describe all possible macroscopic dynamical states of the network, including states of synchronous spiking activity. Finally we show that the firing rate description is related, via a conformal map, with a low-dimensional description in terms of the Kuramoto order parameter, called Ott-Antonsen theory. We anticipate our results will be an important tool in investigating how large networks of spiking neurons self-organize in time to process and encode information in the brain.
Physical Review E | 2009
Diego Pazó; Ernest Montbrió
We investigate the transition to synchronization in the Kuramoto model with bimodal distributions of the natural frequencies. Previous studies have concluded that the model exhibits a hysteretic phase transition if the bimodal distribution is close to a unimodal one due to the shallowness of the central dip. Here we show that proximity to the unimodal-bimodal border does not necessarily imply hysteresis when the width, but not the depth, of the central dip tends to zero. We draw this conclusion from a detailed study of the Kuramoto model with a suitable family of bimodal distributions.
Physical Review Letters | 2011
Ernest Montbrió; Diego Pazó
Large ensembles of heterogeneous oscillators often exhibit collective synchronization as a result of mutual interactions. If the oscillators have distributed natural frequencies and common shear (or nonisochronicity), the transition from incoherence to collective synchronization is known to occur at large enough values of the coupling strength. However, here we demonstrate that shear diversity cannot be counterbalanced by diffusive coupling leading to synchronization. We present the first analytical results for the Kuramoto model with distributed shear and show that the onset of collective synchronization is impossible if the width of the shear distribution exceeds a precise threshold.
Chaos | 2003
Ernest Montbrió; Bernd Blasius
We investigate the transition to synchronization in ensembles of coupled oscillators with quenched disorder. We find that small coupling is able to increase the frequency disorder and to induce a spread of oscillator frequencies. This new effect of anomalous desynchronization is studied with numerical and analytical means in a large class of systems including Rössler, Lotka-Volterra, Landau-Stuart, and Van-der-Pol oscillators. We show that anomalous effects arise due to an interplay between nonisochronicity and natural frequency of each oscillator and can either increase or inhibit synchronization in the ensemble. This provides a novel possibility to control the synchronization transition in nonidentical systems by suitably distributing the disorder among system parameters. We conjecture that our results are of relevance for biological systems.
Physical Review Letters | 2016
Diego Pazó; Ernest Montbrió
Collective chaos is shown to emerge, via a period-doubling cascade, from quasiperiodic partial synchronization in a population of identical inhibitory neurons with delayed global coupling. This system is thoroughly investigated by means of an exact model of the macroscopic dynamics, valid in the thermodynamic limit. The collective chaotic state is reproduced numerically with a finite population, and persists in the presence of weak heterogeneities. Finally, the relationship of the models dynamics with fast neuronal oscillations is discussed.
Physical Review E | 2011
Ernest Montbrió; Diego Pazó
We analyze the synchronization dynamics of a model obtained from the phase reduction of the mean-field complex Ginzburg-Landau equation with heterogeneity. We present exact results that uncover the role of dissipative and reactive couplings on the synchronization transition when shears and natural frequencies are independently distributed. As it occurs in the purely dissipative case, an excess of shear diversity prevents the onset of synchronization, but this does not hold true if coupling is purely reactive. In this case, the synchronization threshold turns out to depend on the mean of the shear distribution, but not on all the other distributions moments.
EPL | 2011
Diego Pazó; Ernest Montbrió
We uncover a solvable generalization of the Kuramoto model in which shears (or nonisochronicities) and natural frequencies are distributed and statistically dependent. We show that the strength and sign of this dependence greatly alter synchronization and yield qualitatively different phase diagrams. The Ott-Antonsen ansatz allows us to obtain analytical results for a specific family of joint distributions. We also derive, using linear stability analysis, general formulae for the stability border of incoherence.
PLOS Computational Biology | 2017
Federico Devalle; Alex Roxin; Ernest Montbrió
Recurrently coupled networks of inhibitory neurons robustly generate oscillations in the gamma band. Nonetheless, the corresponding Wilson-Cowan type firing rate equation for such an inhibitory population does not generate such oscillations without an explicit time delay. We show that this discrepancy is due to a voltage-dependent spike-synchronization mechanism inherent in networks of spiking neurons which is not captured by standard firing rate equations. Here we investigate an exact low-dimensional description for a network of heterogeneous canonical Class 1 inhibitory neurons which includes the sub-threshold dynamics crucial for generating synchronous states. In the limit of slow synaptic kinetics the spike-synchrony mechanism is suppressed and the standard Wilson-Cowan equations are formally recovered as long as external inputs are also slow. However, even in this limit synchronous spiking can be elicited by inputs which fluctuate on a time-scale of the membrane time-constant of the neurons. Our meanfield equations therefore represent an extension of the standard Wilson-Cowan equations in which spike synchrony is also correctly described.
Physical Review E | 2017
Jose M. Esnaola-Acebes; Alex Roxin; Daniele Avitabile; Ernest Montbrió
We investigate the modes of oscillation of heterogeneous ring networks of quadratic integrate-and-fire (QIF) neurons with nonlocal, space-dependent coupling. Perturbations of the equilibrium state with a particular wave number produce transient standing waves with a specific temporal frequency, analogously to those in a tense string. In the neuronal network, the equilibrium corresponds to a spatially homogeneous, asynchronous state. Perturbations of this state excite the networks oscillatory modes, which reflect the interplay of episodes of synchronous spiking with the excitatory-inhibitory spatial interactions. In the thermodynamic limit, an exact low-dimensional neural field model describing the macroscopic dynamics of the network is derived. This allows us to obtain formulas for the Turing eigenvalues of the spatially homogeneous state and hence to obtain its stability boundary. We find that the frequency of each Turing mode depends on the corresponding Fourier coefficient of the synaptic pattern of connectivity. The decay rate instead is identical for all oscillation modes as a consequence of the heterogeneity-induced desynchronization of the neurons. Finally, we numerically compute the spectrum of spatially inhomogeneous solutions branching from the Turing bifurcation, showing that similar oscillatory modes operate in neural bump states and are maintained away from onset.