Ernesto Bockamp
University of Mainz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ernesto Bockamp.
Cell | 2009
Anne Wilson; Elisa Laurenti; Gabriela M. Oser; Richard Carl Van der Wath; William Blanco-Bose; Maike Jaworski; Sandra Offner; Cyrille F. Dunant; Leonid Eshkind; Ernesto Bockamp; Pietro Liò; H. Robson MacDonald; Andreas Trumpp
Bone marrow hematopoietic stem cells (HSCs) are crucial to maintain lifelong production of all blood cells. Although HSCs divide infrequently, it is thought that the entire HSC pool turns over every few weeks, suggesting that HSCs regularly enter and exit cell cycle. Here, we combine flow cytometry with label-retaining assays (BrdU and histone H2B-GFP) to identify a population of dormant mouse HSCs (d-HSCs) within the lin(-)Sca1+cKit+CD150+CD48(-)CD34(-) population. Computational modeling suggests that d-HSCs divide about every 145 days, or five times per lifetime. d-HSCs harbor the vast majority of multilineage long-term self-renewal activity. While they form a silent reservoir of the most potent HSCs during homeostasis, they are efficiently activated to self-renew in response to bone marrow injury or G-CSF stimulation. After re-establishment of homeostasis, activated HSCs return to dormancy, suggesting that HSCs are not stochastically entering the cell cycle but reversibly switch from dormancy to self-renewal under conditions of hematopoietic stress.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Stefan Hoehme; Marc Brulport; Alexander Bauer; Essam Bedawy; Wiebke Schormann; Matthias Hermes; Verena Puppe; Rolf Gebhardt; Sebastian Zellmer; Michael Schwarz; Ernesto Bockamp; Tobias Timmel; Jan G. Hengstler; Dirk Drasdo
Only little is known about how cells coordinately behave to establish functional tissue structure and restore microarchitecture during regeneration. Research in this field is hampered by a lack of techniques that allow quantification of tissue architecture and its development. To bridge this gap, we have established a procedure based on confocal laser scans, image processing, and three-dimensional tissue reconstruction, as well as quantitative mathematical modeling. As a proof of principle, we reconstructed and modeled liver regeneration in mice after damage by CCl4, a prototypical inducer of pericentral liver damage. We have chosen the regenerating liver as an example because of the tight link between liver architecture and function: the complex microarchitecture formed by hepatocytes and microvessels, i.e. sinusoids, ensures optimal exchange of metabolites between blood and hepatocytes. Our model captures all hepatocytes and sinusoids of a liver lobule during a 16 days regeneration process. The model unambiguously predicted a so-far unrecognized mechanism as essential for liver regeneration, whereby daughter hepatocytes align along the orientation of the closest sinusoid, a process which we named “hepatocyte-sinusoid alignment” (HSA). The simulated tissue architecture was only in agreement with the experimentally obtained data when HSA was included into the model and, moreover, no other likely mechanism could replace it. In order to experimentally validate the model of prediction of HSA, we analyzed the three-dimensional orientation of daughter hepatocytes in relation to the sinusoids. The results of this analysis clearly confirmed the model prediction. We believe our procedure is widely applicable in the systems biology of tissues.
Journal of Experimental Medicine | 2012
Marco Reis; Cathrin J. Czupalla; Nicole Ziegler; Kavi Devraj; Jenny Zinke; Sascha Seidel; Rosario Heck; Sonja Thom; Jadranka Macas; Ernesto Bockamp; Marcus Fruttiger; Makoto M. Taketo; Stefanie Dimmeler; Karl H. Plate; Stefan Liebner
Wnt modulates glioma vascularization by regulating PDGF-B expression.
Cancer Research | 2013
Winnie F. Tam; Patricia S. Hähnel; Andrea Schüler; Benjamin H. Lee; Rachel Okabe; Nan Zhu; Saskia V. Pante; Glen D. Raffel; Thomas Mercher; Gerlinde Wernig; Ernesto Bockamp; Daniel Sasca; Andreas Kreft; Gertraud W. Robinson; Lothar Hennighausen; D. Gary Gilliland; Thomas Kindler
MOZ-TIF2 is a leukemogenic fusion oncoprotein that confers self-renewal capability to hematopoietic progenitor cells and induces acute myelogenous leukemia (AML) with long latency in bone marrow transplantation assays. Here, we report that FLT3-ITD transforms hematopoietic cells in cooperation with MOZ-TIF2 in vitro and in vivo. Coexpression of FLT3-ITD confers growth factor independent survival/proliferation, shortens disease latency, and results in an increase in the number of leukemic stem cells (LSC). We show that STAT5, a major effector of aberrant FLT3-ITD signal transduction, is both necessary and sufficient for this cooperative effect. In addition, STAT5 signaling is essential for MOZ-TIF2-induced leukemic transformation itself. Lack of STAT5 in fetal liver cells caused rapid differentiation and loss of replating capacity of MOZ-TIF2-transduced cells enriched for LSCs. Furthermore, mice serially transplanted with Stat5(-/-) MOZ-TIF2 leukemic cells develop AML with longer disease latency and finally incomplete penetrance when compared with mice transplanted with Stat5(+/+) MOZ-TIF2 leukemic cells. These data suggest that STAT5AB is required for the self-renewal of LSCs and represents a combined signaling node of FLT3-ITD and MOZ-TIF2 driven leukemogenesis. Therefore, targeting aberrantly activated STAT5 or rewired downstream signaling pathways may be a promising therapeutic option.
Embo Molecular Medicine | 2013
Nina Cabezas-Wallscheid; Victoria Eichwald; Jos de Graaf; Martin Löwer; Hans A. Lehr; Andreas Kreft; Leonid Eshkind; Andreas Hildebrandt; Yasmin Abassi; Rosario Heck; Anna Katharina Dehof; Svetlana Ohngemach; Rolf Sprengel; Simone Wörtge; Steffen Schmitt; Johannes Lotz; Claudius U. Meyer; Thomas Kindler; Dong-Er Zhang; Bernd Kaina; John C. Castle; Andreas Trumpp; Ugur Sahin; Ernesto Bockamp
The t(8;21) chromosomal translocation activates aberrant expression of the AML1‐ETO (AE) fusion protein and is commonly associated with core binding factor acute myeloid leukaemia (CBF AML). Combining a conditional mouse model that closely resembles the slow evolution and the mosaic AE expression pattern of human t(8;21) CBF AML with global transcriptome sequencing, we find that disease progression was characterized by two principal pathogenic mechanisms. Initially, AE expression modified the lineage potential of haematopoietic stem cells (HSCs), resulting in the selective expansion of the myeloid compartment at the expense of normal erythro‐ and lymphopoiesis. This lineage skewing was followed by a second substantial rewiring of transcriptional networks occurring in the trajectory to manifest leukaemia. We also find that both HSC and lineage‐restricted granulocyte macrophage progenitors (GMPs) acquired leukaemic stem cell (LSC) potential being capable of initiating and maintaining the disease. Finally, our data demonstrate that long‐term expression of AE induces an indolent myeloproliferative disease (MPD)‐like myeloid leukaemia phenotype with complete penetrance and that acute inactivation of AE function is a potential novel therapeutic option.
Journal of Gene Medicine | 2007
Ernesto Bockamp; Cerstin Christel; Dorothe Hameyer; Andriy Khobta; Marko Maringer; Marco Reis; Rosario Heck; Nina Cabezas-Wallscheid; Bernd Epe; Barbara Oesch-Bartlomowicz; Bernd Kaina; Steffen Schmitt; Leonid Eshkind
Conditional gene regulatory systems ensuring tight and adjustable expression of therapeutic genes are central for developing future gene therapy strategies. Among various regulatory systems, tetracycline‐controlled gene expression has emerged as a safe and reliable option. Moreover, the tightness of tetracycline‐regulated gene switches can be substantially improved by complementing transcriptional activators with antagonizing repressors.
BMC Developmental Biology | 2010
Simone Wörtge; Leonid Eshkind; Nina Cabezas-Wallscheid; Bernard Lakaye; Jinhyun Kim; Rosario Heck; Yasmin Abassi; Mustapha Diken; Rolf Sprengel; Ernesto Bockamp
BackgroundConditional gene activation is an efficient strategy for studying gene function in genetically modified animals. Among the presently available gene switches, the tetracycline-regulated system has attracted considerable interest because of its unique potential for reversible and adjustable gene regulation.ResultsTo investigate whether the ubiquitously expressed Gt(ROSA)26Sor locus enables uniform DOX-controlled gene expression, we inserted the improved tetracycline-regulated transcription activator iM2 together with an iM2 dependent GFP gene into the Gt(ROSA)26Sor locus, using gene targeting to generate ROSA26-iM2-GFP (R26t1Δ) mice. Despite the presence of ROSA26 promoter driven iM2, R26t1Δ mice showed very sparse DOX-activated expression of different iM2-responsive reporter genes in the brain, mosaic expression in peripheral tissues and more prominent expression in erythroid, myeloid and lymphoid lineages, in hematopoietic stem and progenitor cells and in olfactory neurons.ConclusionsThe finding that gene regulation by the DOX-activated transcriptional factor iM2 in the Gt(ROSA)26Sor locus has its limitations is of importance for future experimental strategies involving transgene activation from the endogenous ROSA26 promoter. Furthermore, our ROSA26-iM2 knock-in mouse model (R26t1Δ) represents a useful tool for implementing gene function in vivo especially under circumstances requiring the side-by-side comparison of gene manipulated and wild type cells. Since the ROSA26-iM2 mouse allows mosaic gene activation in peripheral tissues and haematopoietic cells, this model will be very useful for uncovering previously unknown or unsuspected phenotypes.
Stem Cells | 2017
Ana Cañete; Valentine Comaills; Isabel Prados; Ana M. Castro; Seddik Hammad; Patricia Ybot-Gonzalez; Ernesto Bockamp; Jan G. Hengstler; Berthold Göttgens; María José Sánchez
Stable reconstitution of vascular endothelial beds upon transplantation of progenitor cells represents an important challenge due to the paucity and generally limited integration/expansion potential of most identified vascular related cell subsets. We previously showed that mouse fetal liver (FL) hemato/vascular cells from day 12 of gestation (E12), expressing the Stem Cell Leukaemia (SCL) gene enhancer transgene (SCL‐PLAP+ cells), had robust endothelial engraftment potential when transferred to the blood stream of newborns or adult conditioned recipients, compared to the scarce vascular contribution of adult bone marrow cells. However, the specific SCL‐PLAP+ hematopoietic or endothelial cell subset responsible for the long‐term reconstituting endothelial cell (LTR‐EC) activity and its confinement to FL developmental stages remained unknown. Using a busulfan‐treated newborn transplantation model, we show that LTR‐EC activity is restricted to the SCL‐PLAP+VE‐cadherin+CD45− cell population, devoid of hematopoietic reconstitution activity and largely composed by Lyve1+ endothelial‐committed cells. SCL‐PLAP+ Ve‐cadherin+CD45− cells contributed to the liver sinusoidal endothelium and also to the heart, kidney and lung microvasculature. LTR‐EC activity was detected at different stages of FL development, yet marginal activity was identified in the adult liver, revealing unknown functional differences between fetal and adult liver endothelial/endothelial progenitors. Importantly, the observations that expanding donor‐derived vascular grafts colocalize with proliferating hepatocyte‐like cells and participate in the systemic circulation, support their functional integration into young livers. These findings offer new insights into the engraftment, phonotypical, and developmental characterization of a novel endothelial/endothelial progenitor cell subtype with multiorgan LTR‐EC activity, potentially instrumental for the treatment/genetic correction of vascular diseases. Stem Cells 2017;35:507–521
Archives of Toxicology | 2016
Anne Marowsky; Karen Haenel; Ernesto Bockamp; Rosario Heck; Sibylle Rutishauser; Nandkishor Mule; Diana Kindler; Markus Rudin; Michael Arand
Microsomal epoxide hydrolase (mEH) is a detoxifying enzyme for xenobiotic compounds. Enzymatic activity of mEH can be greatly increased by a point mutation, leading to an E404D amino acid exchange in its catalytic triad. Surprisingly, this variant is not found in any vertebrate species, despite the obvious advantage of accelerated detoxification. We hypothesized that this evolutionary avoidance is due to the fact that the mEH plays a dualistic role in detoxification and control of endogenous vascular signaling molecules. To test this, we generated mEH E404D mice and assessed them for detoxification capacity and vascular dynamics. In liver microsomes from these mice, turnover of the xenobiotic compound phenanthrene-9,10-oxide was four times faster compared to WT liver microsomes, confirming accelerated detoxification. mEH E404D animals also showed faster metabolization of a specific class of endogenous eicosanoids, arachidonic acid-derived epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids (DHETs). Significantly higher DHETs/EETs ratios were found in mEH E404D liver, urine, plasma, brain and cerebral endothelial cells compared to WT controls, suggesting a broad impact of the mEH mutant on endogenous EETs metabolism. Because EETs are strong vasodilators in cerebral vasculature, hemodynamics were assessed in mEH E404D and WT cerebral cortex and hippocampus using cerebral blood volume (CBV)-based functional magnetic resonance imaging (fMRI). Basal CBV0 levels were similar between mEH E404D and control mice in both brain areas. But vascular reactivity and vasodilation in response to the vasodilatory drug acetazolamide were reduced in mEH E404D forebrain compared to WT controls by factor 3 and 2.6, respectively. These results demonstrate a critical role for mEH E404D in vasodynamics and suggest that deregulation of endogenous signaling pathways is the undesirable gain of function associated with the E404D variant.
Mechanisms of Development | 2009
Ernesto Bockamp; Cecilia Antunes; Stefan Liebner; Steffen Schmitt; Nina Cabezas-Wallscheid; Rosario Heck; Svetlana Ohnngemach; Barbara Oesch-Bartlomowicz; Christof Rickert; María José Sánchez; Jan G. Hengstler; Bernd Kaina; Anne Wilson; Andreas Trumpp; Leonid Eshkind
One of the principal issues facing biomedical research is to elucidate developmental pathways and to establish the fate of stem and progenitor cells in vivo. Hematopoiesis, the process of blood cell formation, provides a powerful experimental system for investigating this process. Here, we employ transcriptional regulatory elements from the stem cell leukemia (SCL) gene to selectively label primitive and definitive hematopoiesis. We report that SCL-labelled cells arising in the mid to late streak embryo give rise to primitive red blood cells but fail to contribute to the vascular system of the developing embryo. Restricting SCL-marking to different stages of foetal development, we identify a second population of multilineage progenitors, proficient in contributing to adult erythroid, myeloid and lymphoid cells. The distinct lineage-restricted potential of SCL-labelled early progenitors demonstrates that primitive erythroid cell fate specification is initiated during mid gastrulation. Our data also suggest that the transition from a hemangioblastic precursors with endothelial and blood forming potential to a committed hematopoietic progenitor must have occurred prior to SCL-marking of definitive multilineage blood precursors.