Steffen Schmitt
University of Mainz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steffen Schmitt.
Journal of Immunology | 2004
Samuel Huber; Christoph Schramm; Hans A. Lehr; Amrit Mann; Steffen Schmitt; Christoph Becker; Martina Protschka; Peter R. Galle; Markus F. Neurath; Manfred Blessing
Data regarding the role of TGF-β for the in vivo function of regulatory CD4+CD25+ T cells (Treg) are controversial. A transgenic mouse model with impaired TGF-β signaling specifically in T cells was used to assess the role of endogenous TGF-β for the in vivo function of CD4+CD25+ Treg in a murine model of colitis induced by dextran sulfate. Transfer of wild-type, but not transgenic CD4+CD25+ Treg was found to suppress colitis in wild-type mice. In addition, by transferring CFSE-labeled CD4+CD25+ Treg we could demonstrate that endogenous TGF-β promotes the expansion of CD4+CD25+ Treg in vivo. Transgenic mice themselves developed reduced numbers of peripheral CD4+CD25+ Treg and were more susceptible to the induction of colitis, which could be prevented by the transfer of wild-type Treg. These data indicate that TGF-β signaling in CD4+CD25+ Treg is required for their in vivo expansion and suppressive capacity.
Journal of Clinical Investigation | 2005
Aysefa Doganci; Tatjana Eigenbrod; Norbert Krug; George T. De Sanctis; Michael Hausding; Veit J. Erpenbeck; El-Bdaoui Haddad; Edgar Schmitt; Tobias Bopp; Karl-J. Kallen; Udo Herz; Steffen Schmitt; Cornelia Luft; Olaf Hecht; Jens M. Hohlfeld; Hiroaki Ito; Kazuyuki Yoshizaki; Tadamitsu Kishimoto; Stefan Rose-John; Harald Renz; Markus F. Neurath; Peter R. Galle; Susetta Finotto
The cytokine IL-6 acts via a specific receptor complex that consists of the membrane-bound IL-6 receptor (mIL-6R) or the soluble IL-6 receptor (sIL-6R) and glycoprotein 130 (gp130). In this study, we investigated the role of IL-6R components in asthma. We observed increased levels of sIL-6R in the airways of patients with allergic asthma as compared to those in controls. In addition, local blockade of the sIL-6R in a murine model of late-phase asthma after OVA sensitization by gp130-fraction constant led to suppression of Th2 cells in the lung. By contrast, blockade of mIL-6R induced local expansion of Foxp3-positive CD4+CD25+ Tregs with increased immunosuppressive capacities. CD4+CD25+ but not CD4+CD25- lung T cells selectively expressed the IL-6R alpha chain and showed IL-6-dependent STAT-3 phosphorylation. Finally, in an in vivo transfer model of asthma in immunodeficient Rag1 mice, CD4+CD25+ T cells isolated from anti-IL-6R antibody-treated mice exhibited marked immunosuppressive and antiinflammatory functions. IL-6 signaling therefore controls the balance between effector cells and Tregs in the lung by means of different receptor components. Furthermore, inhibition of IL-6 signaling emerges as a novel molecular approach for the treatment of allergic asthma.
European Journal of Immunology | 2004
Michael Stassen; Sabine Fondel; Tobias Bopp; Christoph Richter; Christian Müller; Jan Kubach; Christian Becker; Jürgen Knop; Alexander H. Enk; Steffen Schmitt; Edgar Schmitt; Helmut Jonuleit
Down‐regulation of autoreactive T cell responses in vivo includes cell‐contact‐dependent as well as contact‐independent mechanisms. Infectious tolerance is a contact‐dependent mechanism used by naturally occurring CD25+ T regulatory cells (Tregs) to confer suppressive activity upon conventional CD4+ T cells thereby generating secondary T helper suppressor cells(Thsup), which inhibit T cell activation via soluble mediators. Here, we describe two distinct subsets of human Tregs, characterized by expression of either the α4β7 integrin or the α4β1 integrin. Upon activation, both subsets show an enhanced expression of FoxP3, recently described as a key transcription factor of murine Tregs. In addition, both are able to convey suppressive capacity to conventional CD4+ T cells. However, the properties of Treg subsets are rather distinct: α4β7+Tregs induce IL‐10‐producing Thsup (Tr1‐like), whereas α4β1+ Tregs induce TGF‐β‐producing Thsup (Th3‐like). Our findings reconcile conflicting results by clearly demonstrating that suppression through naturally occurring CD25+ Tregs is primary cell‐contact‐dependent but is subsequently followed by cell‐contact‐independent T cell inhibition mediated by second‐generation Tr1‐ and Th3‐like Thsup via the soluble factors IL‐10 and TGF‐β.
Journal of Experimental Medicine | 2005
Tobias Bopp; Alois Palmetshofer; Edgar Serfling; Valeska Heib; Steffen Schmitt; Christoph Richter; Matthias Klein; Hansjörg Schild; Edgar Schmitt; Michael Stassen
The phenotype of NFATc2−/− c3−/− (double knockout [DKO]) mice implies a disturbed regulation of T cell responses, evidenced by massive lymphadenopathy, splenomegaly, and autoaggressive phenomena. The population of CD4+ CD25+ T cells from DKO mice lacks regulatory capacity, except a small subpopulation that highly expresses glucocorticoid-induced tumor necrosis factor receptor family–related gene (GITR) and CD25. However, neither wild-type nor DKO CD4+ CD25+ regulatory T cells (T reg cells) are able to suppress proliferation of DKO CD4+ CD25− T helper cells. Therefore, combined NFATc2/c3 deficiency is compatible with the development of CD4+ CD25+ T reg cells but renders conventional CD4+ T cells unresponsive to suppression, underlining the importance of NFAT proteins for sustaining T cell homeostasis.
Circulation | 2004
Sucharit Bhakdi; Michael Torzewski; Kerstin Paprotka; Steffen Schmitt; Hala Barsoom; Prapat Suriyaphol; Shan-Rui Han; Karl J. Lackner; Matthias Husmann
Background—Previous work indicated that enzymatically remodeled LDL (E-LDL) might activate complement in atherosclerotic lesions via a C-reactive protein (CRP)–dependent and CRP-independent pathway. We sought to substantiate this contention and determine whether both pathways drive the sequence to completion. Methods and Results—E-LDL was prepared by sequential treatment of LDL with a protease and cholesteryl esterase. Trypsin, proteinase K, cathepsin H, or plasmin was used with similar results. Functional tests were used to assess total complement hemolytic activity, and immunoassays were used to demonstrate C3 cleavage and to quantify C3a, C4a, C5a, and C5b-9. E-LDL preparations activated complement to completion, independent of CRP, when present above a threshold concentration (100 to 200 μg/mL in 5% serum). Below the threshold, all E-LDL preparations activated complement in dependence of CRP, but the pathway then halted before the terminal sequence. Native LDL and oxidized LDL did not activate complement under any circumstances tested. Immunohistological analyses corroborated the concept that CRP-dependent complement activation inefficiently generates C5b-9. Conclusions—Binding of CRP to E-LDL is the first trigger for complement activation in the atherosclerotic lesion, but the terminal sequence is thereby spared. This putatively protective function of CRP is overrun at higher E-LDL concentrations, so that potentially harmful C5b-9 complexes are generated.
Journal of Immunology | 2004
Michael Stassen; Helmut Jonuleit; Christian Müller; Matthias Klein; Christoph Richter; Tobias Bopp; Steffen Schmitt; Edgar Schmitt
CD25+ T regulatory (Treg) cells play a central role regarding the maintenance of peripheral tolerance via suppression of autoaggressive CD4+ T cells, CD8+ T cells, and Th1 cells. In this study we demonstrate that CD25+ Treg cells can also suppress the differentiation of murine conventional CD4+ T cells toward Th2 cells in a contact-dependent manner. However, the cytokine production and proliferation of established Th2 cells could not be inhibited by freshly isolated CD25+ Treg cells, whereas a strong inhibition of differentiated Th2 cells by in vitro preactivated CD25+ Treg cells could be observed. Inhibition of both conventional CD4+ T cells and Th2 cells is accompanied by a strong enhancement of the expression of FoxP3 in the suppressed T cells. Hence, our study indicates that CD25+ Treg cells have a therapeutic potential for Th2-mediated diseases and suggests a novel mechanism of suppression mediated by the transcriptional repressor FoxP3.
Journal of Immunology | 2008
Katrin Presser; D Schwinge; Michael Wegmann; Samuel Huber; Steffen Schmitt; Alexander Quaas; Joachim Maxeiner; Susetta Finotto; Ansgar W. Lohse; Manfred Blessing; Christoph Schramm
In allergic airway disease, Treg may play an important role in the modulation of airway hyperreactivity (AHR) and inflammation. We therefore investigated the therapeutic potential of Treg in an Ag-dependent murine asthma model. We here describe that AHR can be completely suppressed by adoptive transfer of Treg overexpressing active TGF-β1. Using mice with impaired TGF-β signaling in T cells, we could demonstrate that TGF-β signaling in recipient effector T cells or transferred Treg themselves is not required for the protective effects on AHR. However, the expression of IL-10 by Treg was found to be essential for the suppression of AHR, since Treg overexpressing active TGF-β1 but deficient in IL-10 lacked protective effects. Airway inflammation could not be significantly suppressed by wild-type or transgenic Treg. In conclusion, modulation of cytokine expression by Treg may have therapeutic potential for the treatment of AHR in asthma. The mechanisms of the effects of Treg on airway inflammation require further clarification.
Cancer Research | 2006
Christian Spangenberg; Ekkehart Lausch; Tatjana Trost; Dirk Prawitt; Andreas May; Romy Keppler; Stephan Fees; Dirk Reutzel; Carolin Bell; Steffen Schmitt; Ilka B. Schiffer; Achim Weber; Walburgis Brenner; Matthias Hermes; Ugur Sahin; Özlem Türeci; Heinz Koelbl; Jan G. Hengstler; Bernhard Zabel
Oncogenic activation of the receptor tyrosine kinase ERBB2 is a key event in the development of a number of epithelial malignancies. In these tumors, high levels of ERBB2 are strongly associated with metastatic disease and poor prognosis. Paradoxically, an inherent cellular response to hypermitogenic signaling by ERBB2 and other oncogenes seems to be growth arrest, rather than proliferation. Molecular characterization of this yet undefined antiproliferative state in independent cell lines overexpressing either wild-type ERBB2 or the mutationally activated receptor unveiled a dramatic induction of the α5β1 integrin fibronectin receptor. α5 Integrin up-regulation is mainly a transcriptional response mediated by the hypoxia-inducible transcription factors (HIF), leading to a massive increase in membrane-resident receptor molecules and enhanced fibronectin adhesiveness of the respective cells. Functionally, ERBB2-dependent ligation of fibronectin results in improved survival of mammary adenocarcinoma cells under adverse conditions, like serum withdrawal, hypoxia, and chemotherapy. HIF-1α is an independent predictor of poor overall survival in patients with breast cancer. In particular, HIF-1α overexpression correlates significantly with early local relapse and distant metastasis, a phenotype also highly characteristic of ERBB2-positive tumors. As HIF-1α is known to be stabilized by ERBB2 signaling under normoxic conditions, we propose that α5 integrin is a major effector in this regulatory circuit and may represent the molecular basis for the HIF-1α-dependent aggressiveness observed in ERBB2-overexpressing breast carcinomas. Hypermitogenic ERBB2 signaling and tumor hypoxia may act synergistically to favor the establishment of chemoresistant dormant micrometastatic cells frequently observed in patients with breast cancer. This new insight could be the basis for additional approaches complementing current cancer therapy. (Cancer Res 2006; 66(7): 3715-25)
BMC Cancer | 2013
Martin Grimm; Steffen Schmitt; Peter Teriete; Thorsten Biegner; Arnulf Stenzl; Jörg Hennenlotter; Hans-Joachim Muhs; Adelheid Munz; Tatjana Nadtotschi; Klemens König; Jörg Sänger; Oliver Feyen; Heiko Hofmann; Siegmar Reinert; Johannes F. Coy
BackgroundBiomarkers allowing the characterization of malignancy and therapy response of oral squamous cell carcinomas (OSCC) or other types of carcinomas are still outstanding. The biochemical suicide molecule endonuclease DNaseX (DNaseI-like 1) has been used to identify the Apo10 protein epitope that marks tumor cells with abnormal apoptosis and proliferation. The transketolase-like protein 1 (TKTL1) represents the enzymatic basis for an anaerobic glucose metabolism even in the presence of oxygen (aerobic glycolysis/Warburg effect), which is concomitant with a more malignant phenotype due to invasive growth/metastasis and resistance to radical and apoptosis inducing therapies.MethodsExpression of Apo10 and TKTL1 was analysed retrospectively in OSCC specimen (n = 161) by immunohistochemistry. Both markers represent independent markers for poor survival. Furthermore Apo10 and TKTL1 have been used prospectively for epitope detection in monocytes (EDIM)-blood test in patients with OSCC (n = 50), breast cancer (n = 48), prostate cancer (n = 115), and blood donors/controls (n = 74).ResultsPositive Apo10 and TKTL1 expression were associated with recurrence of the tumor. Multivariate analysis demonstrated Apo10 and TKTL1 expression as an independent prognostic factor for reduced tumor-specific survival. Apo10+/TKTL1+ subgroup showed the worst disease-free survival rate in OSCC.EDIM-Apo10 and EDIM-TKTL1 blood tests allowed a sensitive and specific detection of patients with OSCC, breast cancer and prostate cancer before surgery and in after care. A combined score of Apo10+/TKTL1+ led to a sensitivity of 95.8% and a specificity of 97.3% for the detection of carcinomas independent of the tumor entity.ConclusionsThe combined detection of two independent fundamental biophysical processes by the two biomarkers Apo10 and TKTL1 allows a sensitive and specific detection of neoplasia in a noninvasive and cost-effective way. Further prospective trials are warranted to validate this new concept for the diagnosis of neoplasia and tumor recurrence.
The Journal of Allergy and Clinical Immunology | 2008
Roman Karwot; Joachim Maxeiner; Steffen Schmitt; Petra Scholtes; Michael Hausding; Hans A. Lehr; Laurie H. Glimcher; Susetta Finotto
BACKGROUND The transcriptional regulation of cytokines released and controlled by memory T cells is not well understood. Defective IFN-gamma production in allergic asthma correlates in human beings with the risk of wheezing in childhood. OBJECTIVE To understand the role of the transcription factor nuclear factor of activated T cells 2 (NFATc2) in memory and effector T cells in the airways in experimental allergic asthma. METHODS We used murine models of allergic asthma and adoptive cell transfer of fluorescence-activated sorted cells in a disease model. RESULTS Mice lacking NFATc2 developed an increase in airwayhyperresponsiveness (AHR), remodeling, and serum IgE levelson ovalbumin sensitization. This phenotype was associated withCD81CD1222 T cells deficient in IFN-g production in theairways. The origin of this phenotype in NFATc2(2/2) mice wasrelated to an expanded population of lung CD81CD1221(IL-2Rb chain) CD127hi (IL-7 receptor [R] a chain1) long-livedmemory cells. Adoptive transfer of ovalbumin-specific CD81NFATc2(2/2) T cells enhanced the AHR generated byNFATc2(2/2) CD41 T cells in immunodeficient mice, increasedIL-17, and reduced IFN-g production in the reconstituted mice. Depletion of the memory CD81CD1221IL-7Rhigh T-cellpopulation corrected the defect in IFN-g production by lungNFATc2(2/2) CD81CD1222 cells and abrogated the increasedAHR observed in NFATc2(2/2) CD81 T-cell-reconstituted micewith a severe combined immunodeficiency disorder. CONCLUSION Taken together, our results suggest that NFATc2 expression in long-lived memory CD8+ T cells controls IL-2 and IFN-gamma production in lung CD8+ T cells, which then limits TH17 and TH2 development in the airways during allergen challenge.