Ernesto Méndez
National Autonomous University of Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ernesto Méndez.
Journal of Virology | 2002
Carlos A. Guerrero; Daniela Bouyssounade; Selene Zárate; Pavel Isa; Tomás López; Rafaela Espinosa; Pedro Romero; Ernesto Méndez; Susana López; Carlos F. Arias
ABSTRACT In this work, we have identified the heat shock cognate protein (hsc70) as a receptor candidate for rotaviruses. hsc70 was shown to be present on the surface of MA104 cells, and antibodies to this protein blocked rotavirus infectivity, while not affecting the infectivity of reovirus and poliovirus. Preincubation of the hsc70 protein with the viruses also inhibited their infectivity. Triple-layered particles (mature virions), but not double-layered particles, bound hsc70 in a solid-phase assay, and this interaction was blocked by monoclonal antibodies to the virus surface proteins VP4 and VP7. Rotaviruses were shown to interact with hsc70 at a postattachment step, since antibodies to hsc70 and the protein itself did not inhibit the virus attachment to cells. We propose that the functional rotavirus receptor is a complex of several cell surface molecules that include, among others, hsc70.
Water Research | 2008
Ana Espinosa; Marisa Mazari-Hiriart; Rafaela Espinosa; Liliana Maruri-Avidal; Ernesto Méndez; Carlos F. Arias
In this work, we have characterized the survival of Rhesus rotavirus (RRV) and human astrovirus Yuc8 in clean groundwater and contaminated surface water, as well as in phosphate-buffered solutions maintained in the same conditions as the environmental waters, and have compared the dynamics of virus inactivation with the persistence of the viral genomes, as determined by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). In addition, we also studied the tolerance of these viruses to chlorine disinfection. The reduction of infectivity of astrovirus was higher than for rotavirus, and also higher for both viruses in surface water as compared to groundwater. The enterobacterial content of the water as well as extrinsic factors, such as temperature and light, correlated with the stability of virus infectivity, and with the persistence of the virus genetic material, suggesting that molecular techniques to detect and quantify viral genomes would be suitable for the detection of viruses in water. The virus infectivity persisted in both types of water as well as in chlorine for times longer than previously reported. No decrease of infectivity was observed after 15 days of incubation in either type of water and the viruses remained infectious for months in groundwater. After 120 min in groundwater containing 2 mg/L of free chlorine, the infectivity of rotavirus and astrovirus was reduced by 0.78 and 1.3 logs, respectively. The longer persistence of viruses in this study could result from a combination of factors, including aggregation of the virus.
Journal of General Virology | 2000
Martha Méndez-Toss; Pedro Romero-Guido; Maria Elena Munguia; Ernesto Méndez; Carlos F. Arias
Human astroviruses are an important cause of gastroenteritis. As part of a molecular epidemiological study carried out in Mexico a human astrovirus isolate, Yuc-8, was adapted to grow in CaCo-2 cells, and its entire genome was sequenced. A 15 amino acid deletion in ORF1a, which has been associated with adaptation of astroviruses to grow in cells other than CaCo-2, was present in Yuc-8. Comparative sequence analysis of the Yuc-8 ORF2 with reported human astrovirus sequences revealed that this isolate belongs to genotype (serotype) 8. Two distinct domains in ORF2 were observed: an amino-terminal domain (residues 1 to 415), with identities higher than 81% among the strains analysed, and a carboxy-terminal domain (residues 416 to 782) with identities between 36 and 60%. Two non-superimposable phylogenetic trees were generated by separate analysis of these two domains, suggesting that a differential selective pressure is exerted along the structural polyprotein.
Journal of Virology | 2000
Selene Zárate; Rafaela Espinosa; Pedro Romero; Ernesto Méndez; Carlos F. Arias; Susana López
ABSTRACT Some animal rotaviruses require the presence of sialic acid (SA) on the cell surface to infect the cell. We have isolated variants of rhesus rotavirus (RRV) whose infectivity no longer depends on SA. Both the SA-dependent and -independent interactions of these viruses with the cell are mediated by the virus spike protein VP4, which is cleaved by trypsin into two domains, VP5 and VP8. In this work we have compared the binding characteristics of wild-type RRV and its variant nar3 to MA104 cells. In a direct nonradioactive binding assay, both viruses bound to the cells in a saturable and specific manner. When neutralizing monoclonal antibodies directed to both the VP8 and VP5 domains of VP4 were used to block virus binding, antibodies to VP8 blocked the cell attachment of wild-type RRV but not that of the variant nar3. Conversely, an antibody to VP5 inhibited the binding of nar3 but not that of RRV. These results suggest that while RRV binds to the cell through VP8, the variant does so through the VP5 domain of VP4. This observation was further sustained by the fact that recombinant VP8 and VP5 proteins, produced in bacteria as fusion products with glutathione S-transferase, were found to bind to MA104 cells in a specific and saturable manner and, when preincubated with the cell, were capable of inhibiting the binding of wild-type and variant viruses, respectively. In addition, the VP5 and VP8 recombinant proteins inhibited the infectivity of nar3 and RRV, respectively, confirming the results obtained in the binding assays. Interestingly, when the infectivity assay was performed on neuraminidase-treated cells, the VP5 fusion protein was also found to inhibit the infectivity of RRV, suggesting that RRV could bind to the cell through two sequential steps mediated by the interaction of VP8 and VP5 with SA-containing and SA-independent cell surface receptors, respectively.
Journal of Virology | 2013
Roberto Mateo; Claude M. Nagamine; Jeannie F. Spagnolo; Ernesto Méndez; Michael Rahe; Michael Gale; Junying Yuan; Karla Kirkegaard
ABSTRACT Autophagy is an important component of the innate immune response, directly destroying many intracellular pathogens. However, some pathogens, including several RNA viruses, subvert the autophagy pathway, or components of the pathway, to facilitate their replication. In the present study, the effect of inhibiting autophagy on the growth of dengue virus was tested using a novel inhibitor, spautin-1 (specific and potent autophagy inhibitor 1). Inhibition of autophagy by spautin-1 generated heat-sensitive, noninfectious dengue virus particles, revealing a large effect of components of the autophagy pathway on viral maturation. A smaller effect on viral RNA accumulation was also observed. Conversely, stimulation of autophagy resulted in increased viral titers and pathogenicity in the mouse. We conclude that the presence of functional autophagy components facilitates viral RNA replication and, more importantly, is required for infectious dengue virus production. Pharmacological inhibition of host processes is an attractive antiviral strategy to avoid selection of treatment-resistant variants, and inhibitors of autophagy may prove to be valuable therapeutics against dengue virus infection and pathogenesis.
Archives of Medical Research | 2002
Carlos F. Arias; Pavel Isa; Carlos A. Guerrero; Ernesto Méndez; Selene Zárate; Tomás López; Rafaela Espinosa; Pedro Romero; Susana López
Rotaviruses, the leading cause of severe dehydrating diarrhea in infants and young children worldwide, are non-enveloped viruses formed by three concentric layers of protein that enclose a genome of double-stranded RNA. The entry of rotaviruses into epithelial cells appears to be a multistep process during which at least three contacts between the virus and cell receptors occur. Different rotavirus strains display different requirements to infect cells. Some strains depend on the presence of sialic acid on the cell surface; however, interaction with a sialic acid-containing receptor does not seem to be essential, because variants that no longer need sialic acid to infect the cells can be isolated from sialic acid-dependent strains. Comparative characterization of the sialic acid-dependent rotavirus strain RRV, its neuraminidase-resistant variant nar3, and the human rotavirus strain Wa have allowed to show that alpha2beta1 integrin is used by nar3 as its primary cell attachment site, and by RRV in a second interaction subsequent to its initial contact with a sialic acid-containing cell receptor. These first two interactions are mediated by the virus spike protein VP4. After attaching to the cell, all three strains interact with integrin alphaVbeta3 and protein hsc70, interactions perhaps important for the virus to penetrate into the cells interior. The cell molecules proposed to serve as rotavirus receptors have been found associated with cholesterol and glycosphingolipid-enriched lipid microdomains, and disorganization of these domains greatly inhibits rotavirus infectivity. We propose that the functional rotavirus receptor is a complex of several cell molecules most likely immersed in plasma membrane lipid microdomains.
Journal of Virology | 2004
Ernesto Méndez; Elizabeth Salas-Ocampo; Carlos F. Arias
ABSTRACT In this work we have shown that astrovirus infection induces apoptosis of Caco-2 cells, since fragmentation of cellular DNA, cleavage of cellular proteins which are substrate of activated caspases, and a change in the mitochondrial transmembrane potential occur upon virus infection. The human astrovirus Yuc8 polyprotein capsid precursor VP90 is initially processed to yield VP70, and we have shown that this processing is trypsin independent and occurs intracellularly through four cleavages at its carboxy-terminal region. We further showed that VP90-VP70 processing is mediated by caspases, since it was blocked by the pancaspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone (z-VAD-fmk), and it was promoted by the apoptosis inducer TNF-related apoptosis-inducing ligand (TRAIL). Although the cell-associated virus produced in the presence of these compounds was not affected, the release of infectious virus to the cell supernatant was drastically reduced in the presence of z-VAD-fmk and increased by TRAIL, indicating that VP90-VP70 cleavage is important for the virus particles to be released from the cell. This is the first report that describes the induction and utilization of caspase activity by a virus to promote processing of the capsid precursor and dissemination of the viral particles.
Journal of Virology | 2002
Ernesto Méndez; Teresa Fernández-Luna; Susana López; Martha Méndez-Toss; Carlos F. Arias
ABSTRACT Astroviruses require the proteolytic cleavage of the capsid protein to infect the host cell. Here we describe the processing pathway of the primary translation product of the structural polyprotein (ORF2) encoded by a human astrovirus serotype 8 (strain Yuc8). The primary translation product of ORF2 is of approximately 90 kDa, which is subsequently cleaved to yield a 70-kDa protein (VP70) which is assembled into the viral particles. Limited trypsin treatment of purified particles containing VP70 results in the generation of polypeptides VP41 and VP28, which are then further processed to proteins of 38.5, 35, and 34 kDa and 27, 26, and 25 kDa, respectively. VP34, VP27 and VP25 are the predominant proteins in fully cleaved virions, which correlate with the highest level of infectivity. Processing of the VP41 protein to yield VP38.5 to VP34 polypeptides occurred at its carboxy terminus, as suggested by immunoblot analysis using hyperimmune sera to different regions of the ORF2, while processing of VP28 to generate VP27 and VP25 occurred at its carboxy and amino terminus, respectively, as determined by immunoblot, as well as by N-terminal sequencing of those products. Based on these data, the processing pathway for the 90-kDa primary product of astrovirus Yuc8 ORF2 is presented.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Jinhui Dong; Liping Dong; Ernesto Méndez; Yizhi Tao
Astroviruses are single-stranded, plus-sense RNA viruses that infect both mammals and birds, causing gastroenteritis and other extraintestinal diseases. Clinical studies have established astroviruses as the second leading cause of viral diarrhea in young children. Here we report the crystal structure of the human astrovirus dimeric surface spike determined to 1.8-Å resolution. The overall structure of each spike/projection domain has a unique three-layered β-sandwiches fold, with a core, six-stranded β-barrel structure that is also found in the hepatitis E virus capsid protrusions, suggesting a closer phylogenetic relationship between these two viruses than previously acknowledged. Based on a hepatitis E virus capsid model, we performed homology modeling and produced a complete, T = 3 astrovirus capsid model with features remarkably similar to those observed in a cryoelectron microscopy reconstruction image of a human astrovirus. Mapping conserved residues onto the astrovirus projection domain revealed a putative receptor binding site with amino acid compositions characteristic for polysaccharide recognition. Our results will have an important impact on future characterization of astrovirus structure and function, and will likely have practical applications in the development of vaccines and antivirals.
Journal of Virology | 2001
Tina M. Myers; Victoria G. Kolupaeva; Ernesto Méndez; Scott G. Baginski; Ilya Frolov; Christopher U.T. Hellen; Charles M. Rice
ABSTRACT An internal ribosome entry site (IRES) mediates translation initiation of bovine viral diarrhea virus (BVDV) RNA. Studies have suggested that a portion of the Npro open reading frame (ORF) is required, although its exact function has not been defined. Here we show that a subgenomic (sg) BVDV RNA in which the NS3 ORF is preceded only by the 5′ nontranslated region did not replicate to detectable levels following transfection. However, RNA synthesis and cytopathic effects were observed following serial passage in the presence of a noncytopathic helper virus. Five sg clones derived from the passaged virus contained an identical, silent substitution near the beginning of the NS3 coding sequence (G400U), as well as additional mutations. Four of the reconstructed mutant RNAs replicated in transfected cells, and in vitro translation showed increased levels of NS3 for the mutant RNAs compared to that of wild-type (wt) MetNS3. To more precisely dissect the role of these mutations, we constructed two sg derivatives: ad3.10, which contains only the G400U mutation, and ad3.7, with silent substitutions designed to minimize RNA secondary structure downstream of the initiator AUG. Both RNAs replicated and were translated in vitro to similar levels. Moreover, ad3.7 and ad3.10, but not wt MetNS3, formed toeprints downstream of the initiator AUG codon in an assay for detecting the binding of 40S ribosomal subunits and 43S ribosomal complexes to the IRES. These results suggest that a lack of stable RNA secondary structure(s), rather than a specific RNA sequence, immediately downstream of the initiator AUG is important for optimal translation initiation of pestivirus RNAs.