Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erol Ozgur is active.

Publication


Featured researches published by Erol Ozgur.


Nature Materials | 2011

Arrays of indefinitely long uniform nanowires and nanotubes

Mecit Yaman; Tural Khudiyev; Erol Ozgur; Mehmet Kanik; Ozan Aktas; Ekin O. Ozgur; Hakan Deniz; Enes Korkut; Mehmet Bayindir

Nanowires are arguably the most studied nanomaterial model to make functional devices and arrays. Although there is remarkable maturity in the chemical synthesis of complex nanowire structures, their integration and interfacing to macro systems with high yields and repeatability still require elaborate aligning, positioning and interfacing and post-synthesis techniques. Top-down fabrication methods for nanowire production, such as lithography and electrospinning, have not enjoyed comparable growth. Here we report a new thermal size-reduction process to produce well-ordered, globally oriented, indefinitely long nanowire and nanotube arrays with different materials. The new technique involves iterative co-drawing of hermetically sealed multimaterials in compatible polymer matrices similar to fibre drawing. Globally oriented, endlessly parallel, axially and radially uniform semiconducting and piezoelectric nanowire and nanotube arrays hundreds of metres long, with nanowire diameters less than 15 nm, are obtained. The resulting nanostructures are sealed inside a flexible substrate, facilitating the handling of and electrical contacting to the nanowires. Inexpensive, high-throughput, multimaterial nanowire arrays pave the way for applications including nanowire-based large-area flexible sensor platforms, phase-changememory, nanostructure-enhanced photovoltaics, semiconductor nanophotonics, dielectric metamaterials,linear and nonlinear photonics and nanowire-enabled high-performance composites.


Journal of Materials Chemistry B | 2013

Impact of mesoporous silica nanoparticle surface functionality on hemolytic activity, thrombogenicity and non-specific protein adsorption

Adem Yildirim; Erol Ozgur; Mehmet Bayindir

Although numerous mesoporous silica nanoparticle (MSN) drug carriers and theranostic agents with various surface functionalities have been designed in the last decade, their biocompatibility remains a matter of intensive debate. Here, we systematically evaluated interactions of a series of MSNs possessing different surface functional groups (ionic, polar, neutral, and hydrophobic) with blood constituents, in terms of their hemolytic activity, thrombogenicity, and adsorption of blood proteins on their surfaces. Using a hemolysis assay we showed that surface functionalization can reduce or even completely prevent the hemolytic activity of bare MSNs. We investigated thrombogenicity of MSNs by measuring prothrombin time (PT) and activated partial thromboplastin time (aPTT). We observed that none of the MSNs used in this study exhibit significant thrombogenic activity. Lastly, we examined non-specific protein adsorption on MSN surfaces using human serum albumin (HSA) and gamma globulins (γGs) and found that surface functionalization with ionic groups can greatly reduce protein adsorption. Demonstration of the surface functionalization having a crucial impact on blood compatibility might serve as a guideline for further investigation related to the design of mesoporous silica systems for biomedical applications, and shed light on research towards the ultimate goal of developing smart theranostic systems.


Nano Letters | 2011

Structural Coloring in Large Scale Core–Shell Nanowires

Tural Khudiyev; Erol Ozgur; Mecit Yaman; Mehmet Bayindir

We demonstrated two complementary size-dependent structural coloring mechanisms, interference and scattering, in indefinitely long core-shell nanowire arrays. The unusual nanostructures are comprised of an amorphous semiconducting core and a polymer shell layer with disparate refractive indices but with similar thermomechanical properties. Core-shell nanowires are mass produced from a macroscopic semiconductor rod by using a new top-to-bottom fabrication approach based on thermal size reduction. Nanostructures with diameters from 30 to 200 nm result in coloration that spans the whole visible spectrum via resonant Mie scattering. Nanoshell coloration based on thin film interference is proposed as a structural coloration mechanism which becomes dominant for nanowires having 700-1200 nm diameter. Controlled color generation in any part of visible and infrared spectral regions can be achieved by the simple scaling down procedure. Spectral color generation in mass-produced uniform core-shell nanowire arrays paves the way for applications such as spectral authentication at nanoscale, light-scattering ingredients in paints and cosmetics, large-area devices, and infrared shielding.


Nano Letters | 2012

Macroscopic assembly of indefinitely long and parallel nanowires into large area photodetection circuitry.

Erol Ozgur; Ozan Aktas; Mehmet Kanik; Mecit Yaman; Mehmet Bayindir

Integration of nanowires into functional devices with high yields and good reliability turned out to be a lot more challenging and proved to be a critical issue obstructing the wide application of nanowire-based devices and exploitation of their technical promises. Here we demonstrate a relatively easy macrofabrication of a nanowire-based imaging circuitry using a recently developed nanofabrication technique. Extremely long and polymer encapsulated semiconducting nanowire arrays, mass-produced using the iterative thermal drawing, facilitate the integration process; we manually aligned the fibers containing selenium nanowires over a lithographically defined circuitry. Controlled etching of the encapsulating polymer revealed a monolayer of nanowires aligned over an area of 1 cm(2) containing a 10 × 10 pixel array. Each light-sensitive pixel is formed by the contacting hundreds of parallel photoconductive nanowires between two electrodes. Using the pixel array, alphabetic characters were identified by the circuitry to demonstrate its imaging capacity. This new approach makes it possible to devise extremely large nanowire devices on planar, flexible, or curved substrates with diverse functionalities such as thermal sensors, phase change memory, and artificial skin.


Scientific Reports | 2015

Label-Free Biosensing with High Selectivity in Complex Media using Microtoroidal Optical Resonators

Erol Ozgur; Pelin Toren; Ozan Aktas; Ersin Huseyinoglu; Mehmet Bayindir

Although label-free biosensors comprised of optical microcavities inherently possess the capability of resolving molecular interactions at individual level, this extreme sensitivity restricts their convenience for large scale applications by inducing vulnerability towards non-specific interactions that readily occur within complex media. Therefore, the use of optical microresonators for biosensing is mostly limited within strictly defined laboratory conditions, instead of field applications as early detection of cancer markers in blood, or identification of contamination in food. Here, we propose a novel surface modification strategy suitable for but not limited to optical microresonator based biosensors, enabling highly selective biosensing with considerable sensitivity as well. Using a robust, silane-based surface coating which is simultaneously protein resistant and bioconjugable, we demonstrate that it becomes possible to perform biosensing within complex media, without compromising the sensitivity or reliability of the measurement. Functionalized microtoroids are successfully shown to resist nonspecific interactions, while simultaneously being used as sensitive biological sensors. This strategy could pave the way for important applications in terms of extending the use of state-of-the-art biosensors for solving problems similar to the aforementioned.


Analytical Chemistry | 2015

Real-Time and Selective Detection of Single Nucleotide DNA Mutations Using Surface Engineered Microtoroids

Pelin Toren; Erol Ozgur; Mehmet Bayindir

Mictoroids, as optical biosensors, can provide beneficial biosensing platforms to understand DNA alterations. These alterations could have significant clinical importance, such as the case of Pseudomonas aeruginosa, which is a commonly found pathogen in Cystic Fibrosis (CF) patients-causing poor prognosis by undergoing mutations during disease steps, gaining virulence and drug resistance. To provide a preliminary diagnosis platform for early-stage bacterial mutations, biosensing with a selective microtoroid surface was suggested. For this purpose, microtoroids with high quality factors were fabricated. The microtoroid surfaces were coated with (3-aminopropyl) triethoxysilane (APTES)/trimethylmethoxysilane (TMMS) mixed silane solution followed by EDC/NHS chemistry for covalent conjugation of DNA probes. Ethanolamine capping was applied to avoid unspecific interactions. The confocal studies confirmed homogeneous functionalization of the microtoroid surface. The DNA hybridization was demonstrated to be affected from the probe length. The optical biosensors showed a significant response (∼22 pm) to the complementary strand of the mutated type P. aeruginosa DNA, while showing substantially low and late response (∼5 pm) to the point mismatch strand. The limit of detection (LOD) for the complementary strand was calculated as 2.32 nM. No significant response was obtained for the noncomplementary strand. The results showed the microtoroids possessed selective surfaces in terms of distinguishing DNA alterations.


Journal of Materials Chemistry B | 2014

Phosphonate based organosilane modification of a simultaneously protein resistant and bioconjugable silica surface

Erol Ozgur; Pelin Toren; Mehmet Bayindir

A facile method to coat silica surfaces with THPMP is introduced, forming simultaneously a protein resistant and bioconjugable surface. The coating is experimentally identified and its anti-fouling and bioconjugable characteristics are demonstrated.


Optics & Photonics News | 2012

Manually Assembled Macroscopic Nanowire Image Sensor

Erol Ozgur; Ozan Aktas; Mehmet Bayindir

High-throughput assembly of nanoscale structures into functional macroscopic devices appears to be the bottleneck in introducing nanotechnology into our daily lives.1 Nanowires are particularly promising building blocks with extensive composition and fabrication opportunities and extraordinary material characteristics,2 while their use as large-scale devices is equivalently challenging. At this point, neither self-assembly strategies nor top-down techniques are developed enough to pave the way for industrial scale nanowire applications.


ACS Sensors | 2018

Label-Free Optical Biodetection of Pathogen Virulence Factors in Complex Media Using Microtoroids with Multifunctional Surface Functionality

Pelin Toren; Erol Ozgur; Mehmet Bayindir

Early detection of pathogens or their virulence factors in complex media has a key role in early diagnosis and treatment of many diseases. Nanomolar and selective detection of Exotoxin A, which is a virulence factor secreted from Pseudomonas aeruginosa in the sputum of Cystic Fibrosis (CF) patients, can pave the way for early diagnosis of P. aeruginosa infections. In this study, we conducted a preliminary study to demonstrate the feasibility of optical biodetection of P. aeruginosa Exotoxin A in a diluted artificial sputum mimicking the CF respiratory environment. Our surface engineering approach provides an effective biointerface enabling highly selective detection of the Exotoxin A molecules in the complex media using monoclonal anti-Exotoxin A functionalized microtoroids. The highly resilient microtoroid surface toward other constituents of the sputum provides Exotoxin A detection ability in the complex media by reproducible measurements. In this study, the limit-of-detection of Exotoxin A in the complex media is calculated as 2.45 nM.


european quantum electronics conference | 2017

Optical electrophysiology: Femtosecond laser facilitated electrophysiological measurements from single cells

Ali Aytac Seymen; Erol Ozgur; Bülend Ortaç

One of the indispensable tools of electrophysiology is patch-clamp recording, which enables direct observation of ionic transport through cellular membranes. It is an invaluable research tool, providing experimental information related to cellular electrical metabolism, as well as various pathological conditions. While the inventors of patch-clamp recording subsequently became Nobel laurates [1], still it can be considered as one of the most complicated experimental setups, due to the difficulty in puncturing cells using capillary microelectrodes with extreme precision. The throughput of the measurement is also considerably low. Thus, automatized planar patch-clamp systems depending on automatic suction of cells using special chips have emerged, considerably increasing the throughput of electrophysiological measurements for about a decade [2]. However, they are generally restricted to be used only with cultured cells, while they have a poor applicability when isolated cells are considered. Real-time observation of the cells for quality assessment, in terms of the measurement, is also not possible.

Collaboration


Dive into the Erol Ozgur's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge