Errol Hassan
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Errol Hassan.
International Journal of Food Microbiology | 2013
Cemil Kurekci; Jagadish Padmanabha; Sharon L. Bishop-Hurley; Errol Hassan; Rafat Al Jassim; Christopher S. McSweeney
The aim of this study was to examine the antimicrobial potential of three essential oils (EOs: tea tree oil, lemon myrtle oil and Leptospermum oil), five terpenoid compounds (α-bisabolol, α-terpinene, cineole, nerolidol and terpinen-4-ol) and polyphenol against two strains of Campylobacter jejuni (ACM 3393 and the poultry isolate C338), Campylobacter coli and other Gram negative and Gram positive bacteria. Different formulations of neem oil (Azadirachta indica) with these compounds were also tested for synergistic interaction against all organisms. Antimicrobial activity was determined by the use of disc diffusion and broth dilution assays. All EOs tested were found to have strong antimicrobial activity against Campylobacter spp. with inhibitory concentrations in the range 0.001-1% (v/v). Among the single compounds, terpinen-4-ol showed the highest activity against Campylobacter spp. and other reference strains. Based on the antimicrobial activity and potential commerciality of these agents, lemon myrtle oil, α-tops (α-terpineol+cineole+terpinen-4-ol) and terpinen-4-ol were also evaluated using an in vitro fermentation technique to test antimicrobial activity towards C. jejuni in the microbiota from the chicken-caecum. EO compounds (terpinen-4-ol and α-tops) were antimicrobial towards C. jejuni at high doses (0.05%) without altering the fermentation profile. EOs and terpenoid compounds can have strong anti-Campylobacter activity without adversely affecting the fermentation potential of the chicken-caeca microbiota. EOs and their active compounds may have the potential to control C. jejuni colonisation and abundance in poultry.
Poultry Science | 2014
Cemil Kurekci; Rafat Al Jassim; Errol Hassan; Sharon L. Bishop-Hurley; Jagadish Padmanabha; Christopher S. McSweeney
The aim of this work was to test the potential use of plant-derived extracts and compounds to control Campylobacter jejuni in broiler chickens. Over a 7-wk feeding period, birds were fed a commercial diet with or without plant extracts (Acacia decurrens, Eremophila glabra), essential oil [lemon myrtle oil (LMO)], plant secondary compounds [terpinene-4-ol and α-tops (including α-terpineol, cineole, and terpinene-4-ol)], and the antibiotic virginiamycin. Traditional culture and real-time quantitative PCR techniques were used to enumerate the numbers of C. jejuni in chicken fecal and cecal samples. In addition, BW and feed intake were recorded weekly for the calculation of BW gain and feed conversion ratio. The mean log10 counts of C. jejuni were similar (P > 0.05) across treatments. However, significantly lower levels of fecal Campylobacter counts (P < 0.05) were recorded at d 41 for the α-tops treatment by culture methods. No differences (P > 0.05) in BW gain were obtained for dietary supplementation, except for the E. glabra extract, which had a negative impact (P < 0.001) on BW, resulting in sporadic death. Results from this study suggest that supplemental natural compounds used in the current study did not reduce the shedding of C. jejuni to desired levels.
Archive | 2014
Errol Hassan; Ayhan Gökçe
The intensive use of synthetic pesticides in pest control activities can cause resistance and therefore resurgence of target pests. Undesirable effects on the environment, including reduction in natural enemies (predators and parasitoids) and beneficial insects, are also possible. A major concern is the effects of synthetic pesticides on human health. In the last few decades, biopesticides have emerged as a potential alternative to synthetic insecticides. Currently, biopesticides share only a small portion of global pesticide market, but growth is faster in this area than in synthetic insecticides. This growth is mainly driven by a rising interest in the demand for organic agricultural products that is most pronounced in western countries. This review will discuss biopesticide history, categories, advantages, disadvantages, conventional and nonconventional extraction technology, and consumption.
Journal of Economic Entomology | 2012
Purwatiningsih; N. W. Heather; Errol Hassan
ABSTRACT The efficacy of lemon-scented tea tree oil (LSO), Leptospermum petersonii (FM. Bailey), was evaluated against the diamondback moth, Plutella xylostella (L.) under laboratory conditions. Feeding activity and development of larval stages were significantly reduced on broccoli leaves that had been dipped in LSO. Oviposition deterrence was also found when an adult stage was exposed to treated leaves. Fecundity dropped by >50% at concentrations >0.5%. The LC50 value for third instar larvae was estimated to be 2.93% 7 d after treatment. Experiments were also conducted under greenhouse conditions to assess the efficacy of LSO against the diamondback moth. Our results suggest that LSO has modest potential for development as a botanical insecticide. The oil was also tested at concentrations from 0.5 to 6% for oviposition deterrence of an egg parasitoid of the diamondback moth, Trichogramma pretiosum (Riley). LSO deterred parasitization in choice tests but not in no-choice tests. LSO did not cause mortality of T. pretiosum during 24 h in a contact toxicity test. We conclude that LSO had no significant effects on the parasitoid, and therefore LSO is compatible with this biocontrol agent for integrated management of the diamondback moth.
Entomologia Experimentalis Et Applicata | 2014
Yusup Hidayat; N. W. Heather; Errol Hassan
Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), infests many horticultural fruit crops in the eastern part of Australia. Farmers usually apply synthetic insecticides to control this pest. Little is known on the use of plant products especially vegetable oils for fruit fly control although they are considered to be safer than synthetic insecticides. In this study, safflower oil was investigated for its mechanism and effectiveness against female B. tryoni. In a laboratory test, safflower oil treatments (2.5 and 5.0 ml l−1) reduced the number of fly punctures on treated artificial fruits, no matter whether pre‐punctures were present or absent. Safflower oil treatments also reduced the number of fly landings and eggs laid, but only when the treated artificial fruits were without pre‐punctures. These results confirmed that safflower oil is active against female B. tryoni mainly by preventing this fruit fly from making oviposition punctures, not by discouraging them from depositing eggs or by repelling them. The slippery nature of safflower oil is considered to be responsible for a reduction in the susceptibility of artificial fruit to fruit fly punctures. Further investigation using fruit‐bearing tomato plants (a no‐choice test) in a glasshouse situation revealed that safflower oil application at concentrations of 10 and 15 ml l−1 reduced the number of oviposition punctures but failed to reduce the number of eggs laid. To increase efficacy of safflower oil under field conditions, multiple tools may be needed to reduce fruit fly populations and oviposition behaviour, such as the addition of trap‐crops, provision of artificial oviposition sites, or mixing the insecticides with the oil.
Biological Control | 2000
Paul R Grundy; Derek Maelzer; Allan Bruce; Errol Hassan
Agriculture, Ecosystems & Environment | 2005
Sarina Pearce; Myron P. Zalucki; Errol Hassan
Australian Journal of Entomology | 2004
Sarina Pearce; Wendy M Hebron; Robert J. Raven; Myron P. Zalucki; Errol Hassan
Turkish journal of entomology | 2015
Rana Akyazi; Mete Soysal; Errol Hassan
Postharvest Biology and Technology | 2015
Yusup Hidayat; N. W. Heather; Errol Hassan
Collaboration
Dive into the Errol Hassan's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputs