Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ertugrul M. Ozbudak is active.

Publication


Featured researches published by Ertugrul M. Ozbudak.


Nature Genetics | 2002

Regulation of noise in the expression of a single gene

Ertugrul M. Ozbudak; Mukund Thattai; Iren Kurtser; Alan D. Grossman; Alexander van Oudenaarden

Stochastic mechanisms are ubiquitous in biological systems. Biochemical reactions that involve small numbers of molecules are intrinsically noisy, being dominated by large concentration fluctuations. This intrinsic noise has been implicated in the random lysis/lysogeny decision of bacteriophage-λ, in the loss of synchrony of circadian clocks and in the decrease of precision of cell signals. We sought to quantitatively investigate the extent to which the occurrence of molecular fluctuations within single cells (biochemical noise) could explain the variation of gene expression levels between cells in a genetically identical population (phenotypic noise). We have isolated the biochemical contribution to phenotypic noise from that of other noise sources by carrying out a series of differential measurements. We varied independently the rates of transcription and translation of a single fluorescent reporter gene in the chromosome of Bacillus subtilis, and we quantitatively measured the resulting changes in the phenotypic noise characteristics. We report that of these two parameters, increased translational efficiency is the predominant source of increased phenotypic noise. This effect is consistent with a stochastic model of gene expression in which proteins are produced in random and sharp bursts. Our results thus provide the first direct experimental evidence of the biochemical origin of phenotypic noise, demonstrating that the level of phenotypic variation in an isogenic population can be regulated by genetic parameters.


Nature | 2004

Multistability in the lactose utilization network of Escherichia coli

Ertugrul M. Ozbudak; Mukund Thattai; Han N. Lim; Boris I. Shraiman; Alexander van Oudenaarden

Multistability, the capacity to achieve multiple internal states in response to a single set of external inputs, is the defining characteristic of a switch. Biological switches are essential for the determination of cell fate in multicellular organisms, the regulation of cell-cycle oscillations during mitosis and the maintenance of epigenetic traits in microbes. The multistability of several natural and synthetic systems has been attributed to positive feedback loops in their regulatory networks. However, feedback alone does not guarantee multistability. The phase diagram of a multistable system, a concise description of internal states as key parameters are varied, reveals the conditions required to produce a functional switch. Here we present the phase diagram of the bistable lactose utilization network of Escherichia coli. We use this phase diagram, coupled with a mathematical model of the network, to quantitatively investigate processes such as sugar uptake and transcriptional regulation in vivo. We then show how the hysteretic response of the wild-type system can be converted to an ultrasensitive graded response. The phase diagram thus serves as a sensitive probe of molecular interactions and as a powerful tool for rational network design.


Nature | 2008

Control of segment number in vertebrate embryos

Céline Gomez; Ertugrul M. Ozbudak; Joshua P. Wunderlich; Diana P. Baumann; Julian Lewis; Olivier Pourquié

The vertebrate body axis is subdivided into repeated segments, best exemplified by the vertebrae that derive from embryonic somites. The number of somites is precisely defined for any given species but varies widely from one species to another. To determine the mechanism controlling somite number, we have compared somitogenesis in zebrafish, chicken, mouse and corn snake embryos. Here we present evidence that in all of these species a similar ‘clock-and-wavefront’ mechanism operates to control somitogenesis; in all of them, somitogenesis is brought to an end through a process in which the presomitic mesoderm, having first increased in size, gradually shrinks until it is exhausted, terminating somite formation. In snake embryos, however, the segmentation clock rate is much faster relative to developmental rate than in other amniotes, leading to a greatly increased number of smaller-sized somites.


PLOS Biology | 2007

Setting the Tempo in Development: An Investigation of the Zebrafish Somite Clock Mechanism

François Giudicelli; Ertugrul M. Ozbudak; Gavin J Wright; Julian Lewis

The somites of the vertebrate embryo are clocked out sequentially from the presomitic mesoderm (PSM) at the tail end of the embryo. Formation of each somite corresponds to one cycle of oscillation of the somite segmentation clock—a system of genes whose expression switches on and off periodically in the cells of the PSM. We have previously proposed a simple mathematical model explaining how the oscillations, in zebrafish at least, may be generated by a delayed negative feedback loop in which the products of two Notch target genes, her1 and her7, directly inhibit their own transcription, as well as that of the gene for the Notch ligand DeltaC; Notch signalling via DeltaC keeps the oscillations of neighbouring cells in synchrony. Here we subject the model to quantitative tests. We show how to read temporal information from the spatial pattern of stripes of gene expression in the anterior PSM and in this way obtain values for the biosynthetic delays and molecular lifetimes on which the model critically depends. Using transgenic lines of zebrafish expressing her1 or her7 under heat-shock control, we confirm the regulatory relationships postulated by the model. From the timing of somite segmentation disturbances following a pulse of her7 misexpression, we deduce that although her7 continues to oscillate in the anterior half of the PSM, it governs the future somite segmentation behaviour of the cells only while they are in the posterior half. In general, the findings strongly support the mathematical model of how the somite clock works, but they do not exclude the possibility that other oscillator mechanisms may operate upstream from the her7/her1 oscillator or in parallel with it.


PLOS Genetics | 2008

Notch Signalling Synchronizes the Zebrafish Segmentation Clock but Is Not Needed To Create Somite Boundaries

Ertugrul M. Ozbudak; Julian Lewis

Somite segmentation depends on a gene expression oscillator or clock in the posterior presomitic mesoderm (PSM) and on read-out machinery in the anterior PSM to convert the pattern of clock phases into a somite pattern. Notch pathway mutations disrupt somitogenesis, and previous studies have suggested that Notch signalling is required both for the oscillations and for the read-out mechanism. By blocking or overactivating the Notch pathway abruptly at different times, we show that Notch signalling has no essential function in the anterior PSM and is required only in the posterior PSM, where it keeps the oscillations of neighbouring cells synchronized. Using a GFP reporter for the oscillator gene her1, we measure the influence of Notch signalling on her1 expression and show by mathematical modelling that this is sufficient for synchronization. Our model, in which intracellular oscillations are generated by delayed autoinhibition of her1 and her7 and synchronized by Notch signalling, explains the observations fully, showing that there are no grounds to invoke any additional role for the Notch pathway in the patterning of somite boundaries in zebrafish.


Current Opinion in Genetics & Development | 2008

The vertebrate segmentation clock: the tip of the iceberg

Ertugrul M. Ozbudak; Olivier Pourquié

The vertebrate segmentation clock was identified 10 years ago as a molecular oscillator associated with the rhythmic production of embryonic somites. Since then, three major signaling pathways--Notch, FGF, and Wnt--have been shown to be activated periodically during segmentation and proposed to constitute the clockwork of the system. However, recent results from zebrafish embryonic studies demonstrate that Notch signaling is involved in the coupling of oscillations among cells rather than in the pacemaker of the oscillator. Furthermore, genetic analyses in mouse indicate that Wnt and FGF play only a permissive role in the control of the oscillations. Therefore, the nature of the segmentation clock pacemaker still remains elusive.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Spatiotemporal compartmentalization of key physiological processes during muscle precursor differentiation.

Ertugrul M. Ozbudak; Olivier Tassy; Olivier Pourquié

The development of multicellular organisms is controlled by transcriptional networks. Understanding the role of these networks requires a full understanding of transcriptome regulation during embryogenesis. Several microarray studies have characterized the temporal evolution of the transcriptome during development in different organisms [Wang QT, et al. (2004) Dev Cell 6:133–144; Furlong EE, Andersen EC, Null B, White KP, Scott MP (2001) Science 293:1629–1633; Mitiku N, Baker JC (2007) Dev Cell 13:897–907]. In all cases, however, experiments were performed on whole embryos, thus averaging gene expression among many different tissues. Here, we took advantage of the local synchrony of the differentiation process in the paraxial mesoderm. This approach provides a unique opportunity to study the systems-level properties of muscle differentiation. Using high-resolution, spatiotemporal profiling of the early stages of muscle development in the zebrafish embryo, we identified a major reorganization of the transcriptome taking place in the presomitic mesoderm. We further show that the differentiation process is associated with a striking modular compartmentalization of the transcription of essential components of cellular physiological programs. Particularly, we identify a tight segregation of cell cycle/DNA metabolic processes and translation/oxidative metabolism at the tissue level, highly reminiscent of the yeast metabolic cycle. These results should expand more investigations into the developmental control of metabolism.


Development | 2013

Short-lived Her proteins drive robust synchronized oscillations in the zebrafish segmentation clock

Ahmet Ay; Stephan Knierer; Adriana Sperlea; Jack Holland; Ertugrul M. Ozbudak

Oscillations are prevalent in natural systems. A gene expression oscillator, called the segmentation clock, controls segmentation of precursors of the vertebral column. Genes belonging to the Hes/her family encode the only conserved oscillating genes in all analyzed vertebrate species. Hes/Her proteins form dimers and negatively autoregulate their own transcription. Here, we developed a stochastic two-dimensional multicellular computational model to elucidate how the dynamics, i.e. period, amplitude and synchronization, of the segmentation clock are regulated. We performed parameter searches to demonstrate that autoregulatory negative-feedback loops of the redundant repressor Her dimers can generate synchronized gene expression oscillations in wild-type embryos and reproduce the dynamics of the segmentation oscillator in different mutant conditions. Our model also predicts that synchronized oscillations can be robustly generated as long as the half-lives of the repressor dimers are shorter than 6 minutes. We validated this prediction by measuring, for the first time, the half-life of Her7 protein as 3.5 minutes. These results demonstrate the importance of building biologically realistic stochastic models to test biological models more stringently and make predictions for future experimental studies.


PLOS Genetics | 2017

Reduced dosage of β-catenin provides significant rescue of cardiac outflow tract anomalies in a Tbx1 conditional null mouse model of 22q11.2 deletion syndrome

Silvia E. Racedo; Erica Hasten; Mingyan Lin; Gnanapackiam Sheela Devakanmalai; Tingwei Guo; Ertugrul M. Ozbudak; Chen-Leng Cai; Deyou Zheng; Bernice E. Morrow

The 22q11.2 deletion syndrome (22q11.2DS; velo-cardio-facial syndrome; DiGeorge syndrome) is a congenital anomaly disorder in which haploinsufficiency of TBX1, encoding a T-box transcription factor, is the major candidate for cardiac outflow tract (OFT) malformations. Inactivation of Tbx1 in the anterior heart field (AHF) mesoderm in the mouse results in premature expression of pro-differentiation genes and a persistent truncus arteriosus (PTA) in which septation does not form between the aorta and pulmonary trunk. Canonical Wnt/β-catenin has major roles in cardiac OFT development that may act upstream of Tbx1. Consistent with an antagonistic relationship, we found the opposite gene expression changes occurred in the AHF in β-catenin loss of function embryos compared to Tbx1 loss of function embryos, providing an opportunity to test for genetic rescue. When both alleles of Tbx1 and one allele of β-catenin were inactivated in the Mef2c-AHF-Cre domain, 61% of them (n = 34) showed partial or complete rescue of the PTA defect. Upregulated genes that were oppositely changed in expression in individual mutant embryos were normalized in significantly rescued embryos. Further, β-catenin was increased in expression when Tbx1 was inactivated, suggesting that there may be a negative feedback loop between canonical Wnt and Tbx1 in the AHF to allow the formation of the OFT. We suggest that alteration of this balance may contribute to variable expressivity in 22q11.2DS.


Biology Open | 2013

Cited3 activates Mef2c to control muscle cell differentiation and survival

Gnanapackiam Sheela Devakanmalai; Hasan E. Zumrut; Ertugrul M. Ozbudak

Summary Vertebrate muscle development occurs through sequential differentiation of cells residing in somitic mesoderm – a process that is largely governed by transcriptional regulators. Our recent spatiotemporal microarray study in zebrafish has identified functionally uncharacterized transcriptional regulators that are expressed at the initial stages of myogenesis. cited3 is one such novel gene encoding a transcriptional coactivator, which is expressed in the precursors of oxidative slow-twitch myofibers. Our experiments placed cited3 into a gene regulatory network, where it acts downstream of Hedgehog signaling and myoD/myf5 but upstream of mef2c. Knockdown of expression of cited3 by antisense morpholino oligonucleotides impaired muscle cell differentiation and growth, caused muscle cell death and eventually led to total immotility. Transplantation experiments demonstrated that Cited3 cell-autonomously activates the expression of mef2c in slow myofibers, while it non-cell-autonomously regulates expression of structural genes in fast myofibers. Restoring expression of cited3 or mef2c rescued all the cited3 loss-of-function phenotypes. Protein truncation experiments revealed the functional necessity of C-terminally conserved domain of Cited3, which is known to mediate interactions of Cited-family proteins with histone acetylases. Our findings demonstrate that Cited3 is a critical transcriptional coactivator functioning during muscle differentiation and its absence leads to defects in terminal differentiation and survival of muscle cells.

Collaboration


Dive into the Ertugrul M. Ozbudak's collaboration.

Top Co-Authors

Avatar

Alexander van Oudenaarden

Royal Netherlands Academy of Arts and Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mukund Thattai

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan D. Grossman

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Bernice E. Morrow

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge