Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ervin Fodor is active.

Publication


Featured researches published by Ervin Fodor.


Journal of Virology | 2007

Rescue of Influenza A Virus from Recombinant DNA

Ervin Fodor; Louise J. Devenish; Othmar G. Engelhardt; Peter Palese; George G. Brownlee; Adolfo García-Sastre

We have rescued influenza A virus by transfection of 12 plasmids into Vero cells. The eight individual negative-sense genomic viral RNAs were transcribed from plasmids containing human RNA polymerase I promoter and hepatitis delta virus ribozyme sequences. The three influenza virus polymerase proteins and the nucleoprotein were expressed from protein expression plasmids. This plasmid-based reverse genetics technique facilitates the generation of recombinant influenza viruses containing specific mutations in their genes.ABSTRACT The rescue of influenza viruses by reverse genetics has been described only for the influenza A and B viruses. Based on a similar approach, we developed a reverse-genetics system that allows the production of influenza C viruses entirely from cloned cDNA. The complete sequences of the 3′ and 5′ noncoding regions of type C influenza virus C/Johannesburg/1/66 necessary for the cloning of the cDNA were determined for the seven genomic segments. Human embryonic kidney cells (293T) were transfected simultaneously with seven plasmids that direct the synthesis of each of the seven viral RNA segments of the C/JHB/1/66 virus under the control of the human RNA polymerase I promoter and with four plasmids encoding the viral nucleoprotein and the PB2, PB1, and P3 proteins of the viral polymerase complex. This strategy yielded between 103 and 104 PFU of virus per ml of supernatant at 8 to 10 days posttransfection. Additional viruses with substitutions introduced in the hemagglutinin-esterase-fusion protein were successfully produced by this method, and their growth phenotype was evaluated. This efficient system, which does not require helper virus infection, should be useful in viral mutagenesis studies and for generation of expression vectors from type C influenza virus.


Nature | 2009

Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site

Puwei Yuan; Mark Bartlam; Zhiyong Lou; Shoudeng Chen; Jie Zhou; Xiaojing He; Zongyang Lv; Ruowen Ge; Xuemei Li; Tao Deng; Ervin Fodor; Zihe Rao; Yingfang Liu

The heterotrimeric influenza virus polymerase, containing the PA, PB1 and PB2 proteins, catalyses viral RNA replication and transcription in the nucleus of infected cells. PB1 holds the polymerase active site and reportedly harbours endonuclease activity, whereas PB2 is responsible for cap binding. The PA amino terminus is understood to be the major functional part of the PA protein and has been implicated in several roles, including endonuclease and protease activities as well as viral RNA/complementary RNA promoter binding. Here we report the 2.2 ångström (Å) crystal structure of the N-terminal 197 residues of PA, termed PAN, from an avian influenza H5N1 virus. The PAN structure has an α/β architecture and reveals a bound magnesium ion coordinated by a motif similar to the (P)DXN(D/E)XK motif characteristic of many endonucleases. Structural comparisons and mutagenesis analysis of the motif identified in PAN provide further evidence that PAN holds an endonuclease active site. Furthermore, functional analysis with in vivo ribonucleoprotein reconstitution and direct in vitro endonuclease assays strongly suggest that PAN holds the endonuclease active site and has critical roles in endonuclease activity of the influenza virus polymerase, rather than PB1. The high conservation of this endonuclease active site among influenza strains indicates that PAN is an important target for the design of new anti-influenza therapeutics.


Journal of Virology | 2002

A Single Amino Acid Mutation in the PA Subunit of the Influenza Virus RNA Polymerase Inhibits Endonucleolytic Cleavage of Capped RNAs

Ervin Fodor; Mandy Crow; Louise Mingay; Tao Deng; Jane Sharps; Pierre Fechter; George G. Brownlee

ABSTRACT The influenza A virus RNA-dependent RNA polymerase consists of three subunits—PB1, PB2, and PA. The PB1 subunit is the catalytically active polymerase, catalyzing the sequential addition of nucleotides to the growing RNA chain. The PB2 subunit is a cap-binding protein that plays a role in initiation of viral mRNA synthesis by recruiting capped RNA primers. The function of PA is unknown, but previous studies of temperature-sensitive viruses with mutations in PA have implied a role in viral RNA replication. In this report we demonstrate that the PA subunit is required not only for replication but also for transcription of viral RNA. We mutated evolutionarily conserved amino acids to alanines in the C-terminal region of the PA protein, since the C-terminal region shows the highest degree of conservation between PA proteins of influenza A, B, and C viruses. We tested the effects of these mutations on the ability of RNA polymerase to transcribe and replicate viral RNA. We also tested the compatibility of these mutations with viral viability by using reverse-genetics techniques. A mutant with a histidine-to-alanine change at position 510 (H510A) in the PA protein of influenza A/WSN/33 virus showed a differential effect on transcription and replication. This mutant was able to perform replication (vRNA→cRNA→vRNA), but its transcriptional activity (vRNA→mRNA) was negligible. In vitro analyses of the H510A recombinant polymerase, by using transcription initiation, vRNA-binding, capped-RNA-binding, and endonuclease assays, suggest that the primary defect of this mutant polymerase is in its endonuclease activity.


Current Topics in Microbiology and Immunology | 2004

Orthomyxovirus replication, transcription, and polyadenylation.

Gabriele Neumann; G. G. Brownlee; Ervin Fodor; Yoshihiro Kawaoka

Efficient in vitro and in vivo systems are now in place to study the role of viral proteins in replication and/or transcription, the regulation of these processes, polyadenylation of viral mRNAs, the viral promoter structures, or the significance of noncoding regions for virus replication. In this chapter, we review the status of current knowledge of the orthomyxovirus RNA synthesis.


Journal of General Virology | 2009

NS2/NEP protein regulates transcription and replication of the influenza virus RNA genome.

Nicole C. Robb; Matthew Smith; Frank T. Vreede; Ervin Fodor

The influenza virus RNA polymerase transcribes the negative-sense viral RNA segments (vRNA) into mRNA and replicates them via complementary RNA (cRNA) intermediates into more copies of vRNA. It is not clear how the relative amounts of the three RNA products, mRNA, cRNA and vRNA, are regulated during the viral life cycle. We found that in viral ribonucleoprotein (vRNP) reconstitution assays involving only the minimal components required for viral transcription and replication (the RNA polymerase, the nucleoprotein and a vRNA template), the relative levels of accumulation of RNA products differed from those observed in infected cells, suggesting a regulatory role for additional viral proteins. Expression of the viral NS2/NEP protein in RNP reconstitution assays affected viral RNA levels by reducing the accumulation of transcription products and increasing the accumulation of replication products to more closely resemble those found during viral infection. This effect was functionally conserved in influenza A and B viruses and was influenza-virus-type-specific, demonstrating that the NS2/NEP protein changes RNA levels by specific alteration of the viral transcription and replication machinery, rather than through an indirect effect on the host cell. Although NS2/NEP has been shown previously to play a role in the nucleocytoplasmic export of viral RNPs, deletion of the nuclear export sequence region that is required for its transport function did not affect the ability of the protein to regulate RNA levels. A role for the NS2/NEP protein in the regulation of influenza virus transcription and replication that is independent of its viral RNP export function is proposed.


Journal of Virology | 2005

Association of the Influenza A Virus RNA-Dependent RNA Polymerase with Cellular RNA Polymerase II

Othmar G. Engelhardt; Matthew Smith; Ervin Fodor

ABSTRACT Transcription by the influenza virus RNA-dependent RNA polymerase is dependent on cellular RNA processing activities that are known to be associated with cellular RNA polymerase II (Pol II) transcription, namely, capping and splicing. Therefore, it had been hypothesized that transcription by the viral RNA polymerase and Pol II might be functionally linked. Here, we demonstrate for the first time that the influenza virus RNA polymerase complex interacts with the large subunit of Pol II via its C-terminal domain. The viral polymerase binds hyperphosphorylated forms of Pol II, indicating that it targets actively transcribing Pol II. In addition, immunofluorescence analysis is consistent with a new model showing that influenza virus polymerase accumulates at Pol II transcription sites. The present findings provide a framework for further studies to elucidate the mechanistic principles of transcription by a viral RNA polymerase and have implications for the regulation of Pol II activities in infected cells.


Nature Communications | 2011

Differential use of importin-α isoforms governs cell tropism and host adaptation of influenza virus

Gülsah Gabriel; Karin Klingel; Anna Otte; Swantje Thiele; Ben Hudjetz; Gökhan Arman-Kalcek; Martina Sauter; Tatiana Shmidt; Franziska Rother; Sigrid Baumgarte; Björn Keiner; Enno Hartmann; Michael Bader; George G. Brownlee; Ervin Fodor; Hans-Dieter Klenk

Influenza A viruses are a threat to humans due to their ability to cross species barriers, as illustrated by the 2009 H1N1v pandemic and sporadic H5N1 transmissions. Interspecies transmission requires adaptation of the viral polymerase to importin-α, a cellular protein that mediates transport into the nucleus where transcription and replication of the viral genome takes place. In this study, we analysed replication, host specificity and pathogenicity of avian and mammalian influenza viruses, in importin-α-silenced cells and importin-α-knockout mice, to understand the role of individual importin-α isoforms in adaptation. For efficient virus replication, the polymerase subunit PB2 and the nucleoprotein (NP) of avian viruses required importin-α3, whereas PB2 and NP of mammalian viruses showed importin-α7 specificity. H1N1v replication depended on both, importin-α3 and -α7, suggesting ongoing adaptation of this virus. Thus, differences in importin-α specificity are determinants of host range underlining the importance of the nuclear envelope in interspecies transmission.


Journal of Virology | 2004

The PA Subunit Is Required for Efficient Nuclear Accumulation of the PB1 Subunit of the Influenza A Virus RNA Polymerase Complex

Ervin Fodor; Matthew Smith

ABSTRACT The RNA genome of influenza virus is transcribed and replicated by the viral RNA polymerase complex in the cell nucleus. We have generated green fluorescent protein (GFP)-tagged polymerase subunits to study the assembly of the polymerase complex. Our results show that individually expressed polymerase basic protein 1 (PB1) and polymerase acidic protein (PA) subunits were distributed in both the cytoplasm and the nucleus, while the polymerase basic protein 2 (PB2) subunit accumulated in the nucleus. Although it has been reported that PB1 alone accumulates in the nucleus, we demonstrate that PB1 requires the coexpression of PA for efficient nuclear accumulation. Our results support a model which proposes that PB1 and PA are transported into the nucleus as a complex.


Journal of Virology | 2010

The PB2 Subunit of the Influenza Virus RNA Polymerase Affects Virulence by Interacting with the Mitochondrial Antiviral Signaling Protein and Inhibiting Expression of Beta Interferon

Katy M. Graef; Frank T. Vreede; Yuk Fai Lau; Amber W. McCall; Simon M. Carr; Kanta Subbarao; Ervin Fodor

ABSTRACT The PB2 subunit of the influenza virus RNA polymerase is a major virulence determinant of influenza viruses. However, the molecular mechanisms involved remain unknown. It was previously shown that the PB2 protein, in addition to its nuclear localization, also accumulates in the mitochondria. Here, we demonstrate that the PB2 protein interacts with the mitochondrial antiviral signaling protein, MAVS (also known as IPS-1, VISA, or Cardif), and inhibits MAVS-mediated beta interferon (IFN-β) expression. In addition, we show that PB2 proteins of influenza viruses differ in their abilities to associate with the mitochondria. In particular, the PB2 proteins of seasonal human influenza viruses localize to the mitochondria while PB2 proteins of avian influenza viruses are nonmitochondrial. This difference in localization is caused by a single amino acid polymorphism in the PB2 mitochondrial targeting signal. In order to address the functional significance of the mitochondrial localization of the PB2 protein in vivo, we have generated two recombinant human influenza viruses encoding either mitochondrial or nonmitochondrial PB2 proteins. We found that the difference in the mitochondrial localization of the PB2 proteins does not affect the growth of these viruses in cell culture. However, the virus encoding the nonmitochondrial PB2 protein induces higher levels of IFN-β and, in an animal model, is attenuated compared to the isogenic virus encoding a mitochondrial PB2. Overall this study implicates the PB2 protein in the regulation of host antiviral innate immune pathways and suggests an important role for the mitochondrial association of the PB2 protein in determining virulence.


PLOS Pathogens | 2012

Identification of a Novel Splice Variant Form of the Influenza A Virus M2 Ion Channel with an Antigenically Distinct Ectodomain

Helen Wise; Edward C. Hutchinson; Brett W. Jagger; Amanda D. Stuart; Zi H. Kang; Nicole C. Robb; Louis M. Schwartzman; John C. Kash; Ervin Fodor; Andrew E. Firth; Julia R. Gog; Jeffery K. Taubenberger; Paul Digard

Segment 7 of influenza A virus produces up to four mRNAs. Unspliced transcripts encode M1, spliced mRNA2 encodes the M2 ion channel, while protein products from spliced mRNAs 3 and 4 have not previously been identified. The M2 protein plays important roles in virus entry and assembly, and is a target for antiviral drugs and vaccination. Surprisingly, M2 is not essential for virus replication in a laboratory setting, although its loss attenuates the virus. To better understand how IAV might replicate without M2, we studied the reversion mechanism of an M2-null virus. Serial passage of a virus lacking the mRNA2 splice donor site identified a single nucleotide pseudoreverting mutation, which restored growth in cell culture and virulence in mice by upregulating mRNA4 synthesis rather than by reinstating mRNA2 production. We show that mRNA4 encodes a novel M2-related protein (designated M42) with an antigenically distinct ectodomain that can functionally replace M2 despite showing clear differences in intracellular localisation, being largely retained in the Golgi compartment. We also show that the expression of two distinct ion channel proteins is not unique to laboratory-adapted viruses but, most notably, was also a feature of the 1983 North American outbreak of H5N2 highly pathogenic avian influenza virus. In identifying a 14th influenza A polypeptide, our data reinforce the unexpectedly high coding capacity of the viral genome and have implications for virus evolution, as well as for understanding the role of M2 in the virus life cycle.

Collaboration


Dive into the Ervin Fodor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tao Deng

University of Oxford

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kanta Subbarao

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge