Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicole C. Robb is active.

Publication


Featured researches published by Nicole C. Robb.


Journal of General Virology | 2009

NS2/NEP protein regulates transcription and replication of the influenza virus RNA genome.

Nicole C. Robb; Matthew Smith; Frank T. Vreede; Ervin Fodor

The influenza virus RNA polymerase transcribes the negative-sense viral RNA segments (vRNA) into mRNA and replicates them via complementary RNA (cRNA) intermediates into more copies of vRNA. It is not clear how the relative amounts of the three RNA products, mRNA, cRNA and vRNA, are regulated during the viral life cycle. We found that in viral ribonucleoprotein (vRNP) reconstitution assays involving only the minimal components required for viral transcription and replication (the RNA polymerase, the nucleoprotein and a vRNA template), the relative levels of accumulation of RNA products differed from those observed in infected cells, suggesting a regulatory role for additional viral proteins. Expression of the viral NS2/NEP protein in RNP reconstitution assays affected viral RNA levels by reducing the accumulation of transcription products and increasing the accumulation of replication products to more closely resemble those found during viral infection. This effect was functionally conserved in influenza A and B viruses and was influenza-virus-type-specific, demonstrating that the NS2/NEP protein changes RNA levels by specific alteration of the viral transcription and replication machinery, rather than through an indirect effect on the host cell. Although NS2/NEP has been shown previously to play a role in the nucleocytoplasmic export of viral RNPs, deletion of the nuclear export sequence region that is required for its transport function did not affect the ability of the protein to regulate RNA levels. A role for the NS2/NEP protein in the regulation of influenza virus transcription and replication that is independent of its viral RNP export function is proposed.


PLOS Pathogens | 2012

Identification of a Novel Splice Variant Form of the Influenza A Virus M2 Ion Channel with an Antigenically Distinct Ectodomain

Helen Wise; Edward C. Hutchinson; Brett W. Jagger; Amanda D. Stuart; Zi H. Kang; Nicole C. Robb; Louis M. Schwartzman; John C. Kash; Ervin Fodor; Andrew E. Firth; Julia R. Gog; Jeffery K. Taubenberger; Paul Digard

Segment 7 of influenza A virus produces up to four mRNAs. Unspliced transcripts encode M1, spliced mRNA2 encodes the M2 ion channel, while protein products from spliced mRNAs 3 and 4 have not previously been identified. The M2 protein plays important roles in virus entry and assembly, and is a target for antiviral drugs and vaccination. Surprisingly, M2 is not essential for virus replication in a laboratory setting, although its loss attenuates the virus. To better understand how IAV might replicate without M2, we studied the reversion mechanism of an M2-null virus. Serial passage of a virus lacking the mRNA2 splice donor site identified a single nucleotide pseudoreverting mutation, which restored growth in cell culture and virulence in mice by upregulating mRNA4 synthesis rather than by reinstating mRNA2 production. We show that mRNA4 encodes a novel M2-related protein (designated M42) with an antigenically distinct ectodomain that can functionally replace M2 despite showing clear differences in intracellular localisation, being largely retained in the Golgi compartment. We also show that the expression of two distinct ion channel proteins is not unique to laboratory-adapted viruses but, most notably, was also a feature of the 1983 North American outbreak of H5N2 highly pathogenic avian influenza virus. In identifying a 14th influenza A polypeptide, our data reinforce the unexpectedly high coding capacity of the viral genome and have implications for virus evolution, as well as for understanding the role of M2 in the virus life cycle.


Journal of Virology | 2010

Functional Analysis of the Influenza Virus H5N1 Nucleoprotein Tail Loop Reveals Amino Acids That Are Crucial for Oligomerization and Ribonucleoprotein Activities

Wai-Hon Chan; Andy Ka-Leung Ng; Nicole C. Robb; Mandy Ka-Han Lam; Paul K.S. Chan; Shannon Wing Ngor Au; Jia-huai Wang; Ervin Fodor; Pang-Chui Shaw

ABSTRACT Homo-oligomerization of the nucleoprotein (NP) of influenza A virus is crucial for providing a major structural framework for the assembly of viral ribonucleoprotein (RNP) particles. The nucleoprotein is also essential for transcription and replication during the virus life cycle. In the H5N1 NP structure, the tail loop region is important for NP to form oligomers. Here, by an RNP reconstitution assay, we identified eight NP mutants that had different degrees of defects in forming functional RNPs, with the RNP activities of four mutants being totally abolished (E339A, V408S P410S, R416A, and L418S P419S mutants) and the RNP activities of the other four mutants being more than 50% decreased (R267A, I406S, R422A, and E449A mutants). Further characterization by static light scattering showed that the totally defective protein variants existed as monomers in vitro, deviating from the trimeric/oligomeric form of wild-type NP. The I406S, R422A, and E449A variants existed as a mixture of unstable oligomers, thus resulting in a reduction of RNP activity. Although the R267A variant existed as a monomer in vitro, it resumed an oligomeric form upon the addition of RNA and retained a certain degree of RNP activity. Our data suggest that there are three factors that govern the NP oligomerization event: (i) interaction between the tail loop and the insertion groove, (ii) maintenance of the tail loop conformation, and (iii) stabilization of the NP homo-oligomer. The work presented here provides information for the design of NP inhibitors for combating influenza virus infection.


Journal of Virology | 2010

NS Reassortment of an H7-Type Highly Pathogenic Avian Influenza Virus Affects Its Propagation by Altering the Regulation of Viral RNA Production and Antiviral Host Response

Zhongfang Wang; Nicole C. Robb; Eva Lenz; Thorsten Wolff; Ervin Fodor; Stephan Pleschka

ABSTRACT Highly pathogenic avian influenza viruses (HPAIV) with reassorted NS segments from H5- and H7-type avian virus strains placed in the genetic background of the A/FPV/Rostock/34 HPAIV (FPV; H7N1) were generated by reverse genetics. Virological characterizations demonstrated that the growth kinetics of the reassortant viruses differed from that of wild-type (wt) FPV and depended on whether cells were of mammalian or avian origin. Surprisingly, molecular analysis revealed that the different reassortant NS segments were not only responsible for alterations in the antiviral host response but also affected viral genome replication and transcription as well as nuclear ribonucleoprotein (RNP) export. RNP reconstitution experiments demonstrated that the effects on accumulation levels of viral RNA species were dependent on the specific NS segment as well as on the genetic background of the RNA-dependent RNA polymerase (RdRp). Beta interferon (IFN-β) expression and the induction of apoptosis were found to be inversely correlated with the magnitude of viral growth, while the NS allele, virus subtype, and nonstructural protein NS1 expression levels showed no correlation. Thus, these results demonstrate that the origin of the NS segment can have a dramatic effect on the replication efficiency and host range of HPAIV. Overall, our data suggest that the propagation of NS reassortant influenza viruses is affected at multiple steps of the viral life cycle as a result of the different effects of the NS1 protein on multiple viral and host functions.


Journal of Virology | 2011

The Influenza A Virus NS1 Protein Interacts with the Nucleoprotein of Viral Ribonucleoprotein Complexes

Nicole C. Robb; Geoffrey Chase; Katja Bier; Frank T. Vreede; Pang-Chui Shaw; Nadia Naffakh; Martin Schwemmle; Ervin Fodor

ABSTRACT The influenza A virus genome consists of eight RNA segments that associate with the viral polymerase proteins (PB1, PB2, and PA) and nucleoprotein (NP) to form ribonucleoprotein complexes (RNPs). The viral NS1 protein was previously shown to associate with these complexes, although it was not clear which RNP component mediated the interaction. Using individual TAP (tandem affinity purification)-tagged PB1, PB2, PA, and NP, we demonstrated that the NS1 protein interacts specifically with NP and not the polymerase subunits. The region of NS1 that binds NP was mapped to the RNA-binding domain.


Journal of General Virology | 2012

The accumulation of influenza A virus segment 7 spliced mRNAs is regulated by the NS1 protein.

Nicole C. Robb; Ervin Fodor

The influenza A virus M1 mRNA is alternatively spliced to produce M2 mRNA, mRNA(3), and in some cases, M4 mRNA. Splicing of influenza mRNAs is carried out by the cellular splicing machinery and is thought to be regulated, as both spliced and unspliced mRNAs encode proteins. In this study, we used radioactively labelled primers to investigate the accumulation of spliced and unspliced M segment mRNAs in viral infection and ribonucleoprotein (RNP) reconstitution assays in which only the minimal components required for transcription and replication to occur were expressed. We found that co-expression of the viral NS1 protein in an RNP reconstitution assay altered the accumulation of spliced mRNAs compared with when it was absent, and that this activity was dependent on the RNA-binding ability of NS1. These findings suggest that the NS1 protein plays a role in the regulation of splicing of influenza virus M1 mRNA.


Journal of General Virology | 2010

Splicing of influenza A virus NS1 mRNA is independent of the viral NS1 protein

Nicole C. Robb; David Jackson; Frank T. Vreede; Ervin Fodor

RNA segment 8 (NS) of influenza A virus encodes two proteins. The NS1 protein is translated from the unspliced primary mRNA transcript, whereas the second protein encoded by this segment, NS2/NEP, is translated from a spliced mRNA. Splicing of influenza NS1 mRNA is thought to be regulated so that the levels of NS2 spliced transcripts are approximately 10 % of total NS mRNA. Regulation of splicing of the NS1 mRNA has been studied at length, and a number of often-contradictory control mechanisms have been proposed. In this study, we used (32)P-labelled gene-specific primers to investigate influenza A NS1 mRNA splicing regulation. It was found that the efficiency of splicing of NS1 mRNA was maintained at similar levels in both virus infection and ribonucleoprotein-reconstitution assays, and NS2 mRNA comprised approximately 15 % of total NS mRNA in both assays. The effect of NS1 protein expression on the accumulation of viral NS2 mRNA and spliced cellular beta-globin mRNA was analysed, and it was found that NS1 protein expression reduced spliced beta-globin mRNA levels, but had no effect on the accumulation of NS2 mRNA. We conclude that the NS1 protein specifically inhibits the accumulation of cellular RNA polymerase II-driven mRNAs, but does not affect the splicing of its own viral NS1 mRNA.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Single-molecule FRET reveals a corkscrew RNA structure for the polymerase-bound influenza virus promoter

Alexandra I. Tomescu; Nicole C. Robb; Narin Hengrung; Ervin Fodor; Achillefs N. Kapanidis

Significance The genome of the influenza virus consists of eight single-stranded segments of RNA with highly conserved 5′ and 3′ termini. These termini associate to form double-stranded structures that act as promoters for viral transcription and replication. Structural information on the polymerase-bound promoter currently does not exist, so to address this we developed a sensitive single-molecule FRET assay that allowed us to measure distances between fluorescent dyes located on the promoter and map its structure. The distances obtained are consistent with the polymerase-bound RNA promoter being in a “corkscrew” conformation, in which the 5′ and 3′ termini form short hairpins. This work has implications for the development of inhibitors that target polymerase–promoter interactions in this important group of pathogens. The influenza virus is a major human and animal pathogen responsible for seasonal epidemics and occasional pandemics. The genome of the influenza A virus comprises eight segments of single-stranded, negative-sense RNA with highly conserved 5′ and 3′ termini. These termini interact to form a double-stranded promoter structure that is recognized and bound by the viral RNA-dependent RNA polymerase (RNAP); however, no 3D structural information for the influenza polymerase-bound promoter exists. Functional studies have led to the proposal of several 2D models for the secondary structure of the bound promoter, including a corkscrew model in which the 5′ and 3′ termini form short hairpins. We have taken advantage of an insect-cell system to prepare large amounts of active recombinant influenza virus RNAP, and used this to develop a highly sensitive single-molecule FRET assay to measure distances between fluorescent dyes located on the promoter and map its structure both with and without the polymerase bound. These advances enabled the direct analysis of the influenza promoter structure in complex with the viral RNAP, and provided 3D structural information that is in agreement with the corkscrew model for the influenza virus promoter RNA. Our data provide insights into the mechanisms of promoter binding by the influenza RNAP and have implications for the understanding of the regulatory mechanisms involved in the transcription of viral genes and replication of the viral RNA genome. In addition, the simplicity of this system should translate readily to the study of any virus polymerase–promoter interaction.


Molecular Cell | 2016

RNA Polymerase Pausing during Initial Transcription

Diego Duchi; David L.V. Bauer; Laurent Fernandez; Geraint Evans; Nicole C. Robb; Ling Chin Hwang; Kristofer Gryte; Alexandra I. Tomescu; Pawel Zawadzki; Zakia Morichaud; Konstantin Brodolin; Achillefs N. Kapanidis

Summary In bacteria, RNA polymerase (RNAP) initiates transcription by synthesizing short transcripts that are either released or extended to allow RNAP to escape from the promoter. The mechanism of initial transcription is unclear due to the presence of transient intermediates and molecular heterogeneity. Here, we studied initial transcription on a lac promoter using single-molecule fluorescence observations of DNA scrunching on immobilized transcription complexes. Our work revealed a long pause (“initiation pause,” ∼20 s) after synthesis of a 6-mer RNA; such pauses can serve as regulatory checkpoints. Region sigma 3.2, which contains a loop blocking the RNA exit channel, was a major pausing determinant. We also obtained evidence for RNA backtracking during abortive initial transcription and for additional pausing prior to escape. We summarized our work in a model for initial transcription, in which pausing is controlled by a complex set of determinants that modulate the transition from a 6- to a 7-nt RNA.


Nature microbiology | 2016

The role of the priming loop in influenza A virus RNA synthesis.

Te Velthuis Aj; Nicole C. Robb; Achillefs N. Kapanidis; Ervin Fodor

RNA-dependent RNA polymerases (RdRps) are used by RNA viruses to replicate and transcribe their RNA genomes1. They adopt a closed, right-handed fold with conserved subdomains called palm, fingers and thumb1,2. Conserved RdRp motifs A–F coordinate the viral RNA template, NTPs and magnesium ions to facilitate nucleotide condensation1. For the initiation of RNA synthesis, most RdRps use either a primer-dependent or de novo mechanism3. The influenza A virus RdRp, in contrast, uses a capped RNA oligonucleotide to initiate transcription, and a combination of terminal and internal de novo initiation for replication4. To understand how the influenza A virus RdRp coordinates these processes, we analysed the function of a thumb subdomain β-hairpin using initiation, elongation and single-molecule Förster resonance energy transfer (sm-FRET) assays. Our data indicate that this β-hairpin is essential for terminal initiation during replication, but not necessary for internal initiation and transcription. Analysis of individual residues in the tip of the β-hairpin shows that PB1 proline 651 is critical for efficient RNA synthesis in vitro and in cell culture. Overall, this work advances our understanding of influenza A virus RNA synthesis and identifies the initiation platform of viral replication.

Collaboration


Dive into the Nicole C. Robb's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen Wise

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar

Julia R. Gog

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge